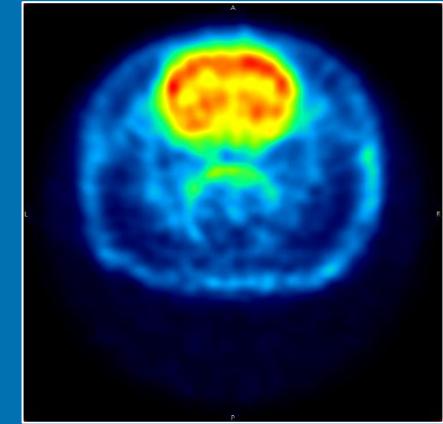


INTERPRETATION OF DYNAMIC X-NUCLEI EXPERIMENTS WITH METABOLIC MODELLING

Bernard Lanz, PhD
CIBM MRI EPFL

10.04.2025



PHYS-770

CIBM translational MR neuroimaging & spectroscopy

EPFL

IN VIVO STUDIES OF BRAIN ACTIVITY

- Electromagnetic activity (action potential):
 - Electroencephalography (EEG)
 - Magnetoencephalography (MEG)
- Oxygen demand and hemodynamic response (oxy/deoxyhemoglobin)
 - Functional magnetic resonance imaging (fMRI)
- Energy metabolism (use of plasma energy substrates)
 - Dynamic magnetic resonance spectroscopy:

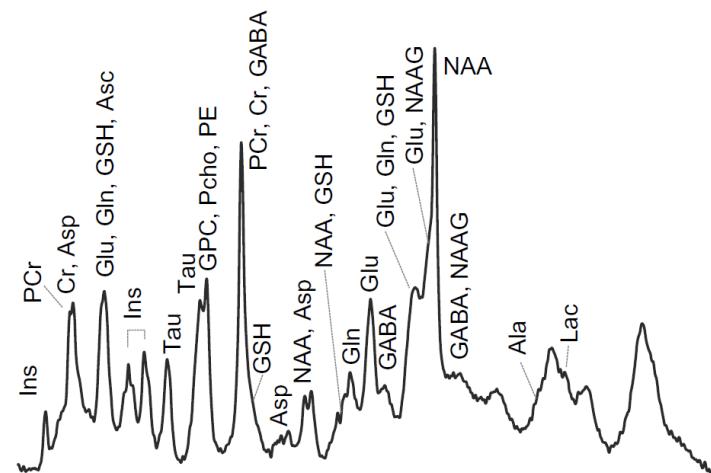
• ^1H MRS (fMRS)	without tracer injection
• ^{13}C MRS	with tracer injection
• ^{15}N MRS	with tracer injection
• ^{31}P MRS	without tracer injection
 - Radionuclides emission tomography (PET, SPECT)

WHAT CAN WE MEASURE WITH MRS ?

In vivo magnetic resonance spectroscopy (MRS) gives extended chemical information on the compounds involved in brain metabolism and biochemical processes

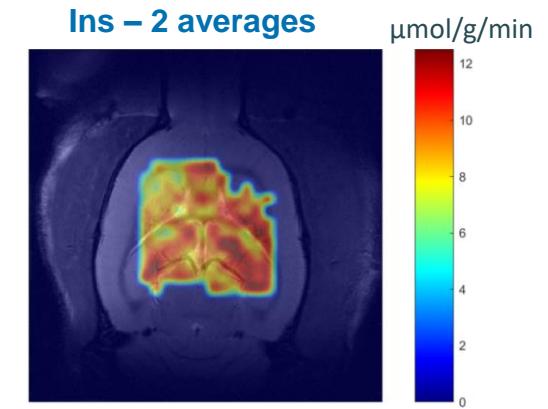
¹H MRS spectrum:

Measures total concentrations of more than 20 compounds at high field (static acquisition in one voxel)



Extend spatial information:

Magnetic resonance spectroscopic imaging (MRSI)



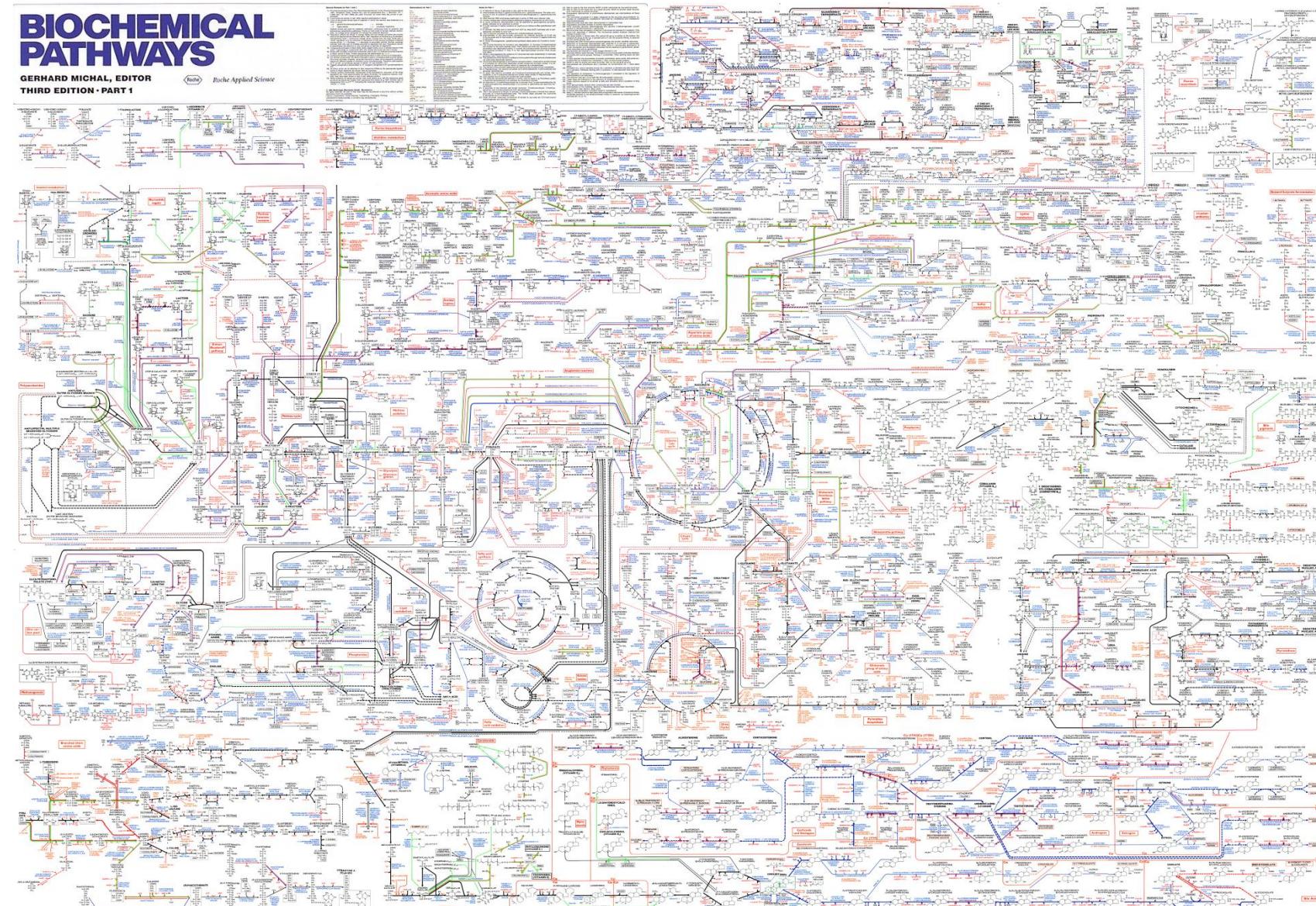
Courtesy of D Simicic, C Cudalbu

*It is an equilibrium information on the compounds
Does not carry information on their interaction*

Extend temporal information:

Dynamic magnetic resonance spectroscopy (typically X-nuclei), to measure metabolic fluxes / reactions

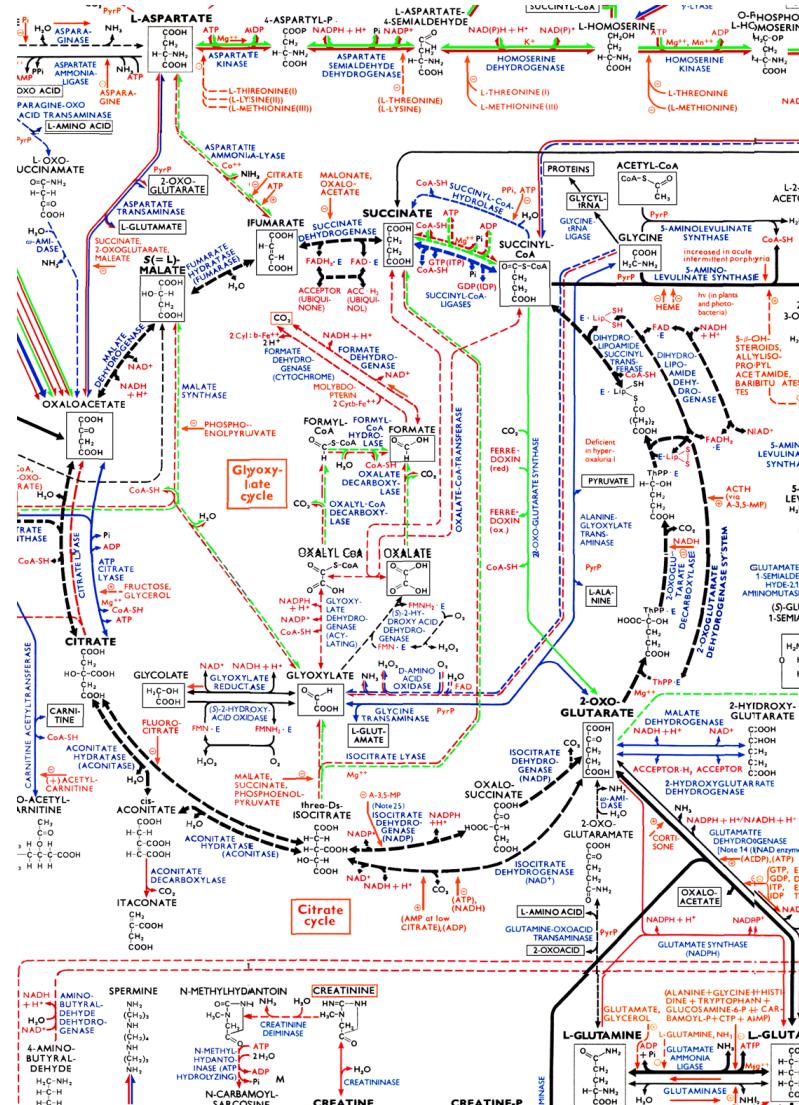
UNDERLYING BIOCHEMICAL MECHANISMS ?



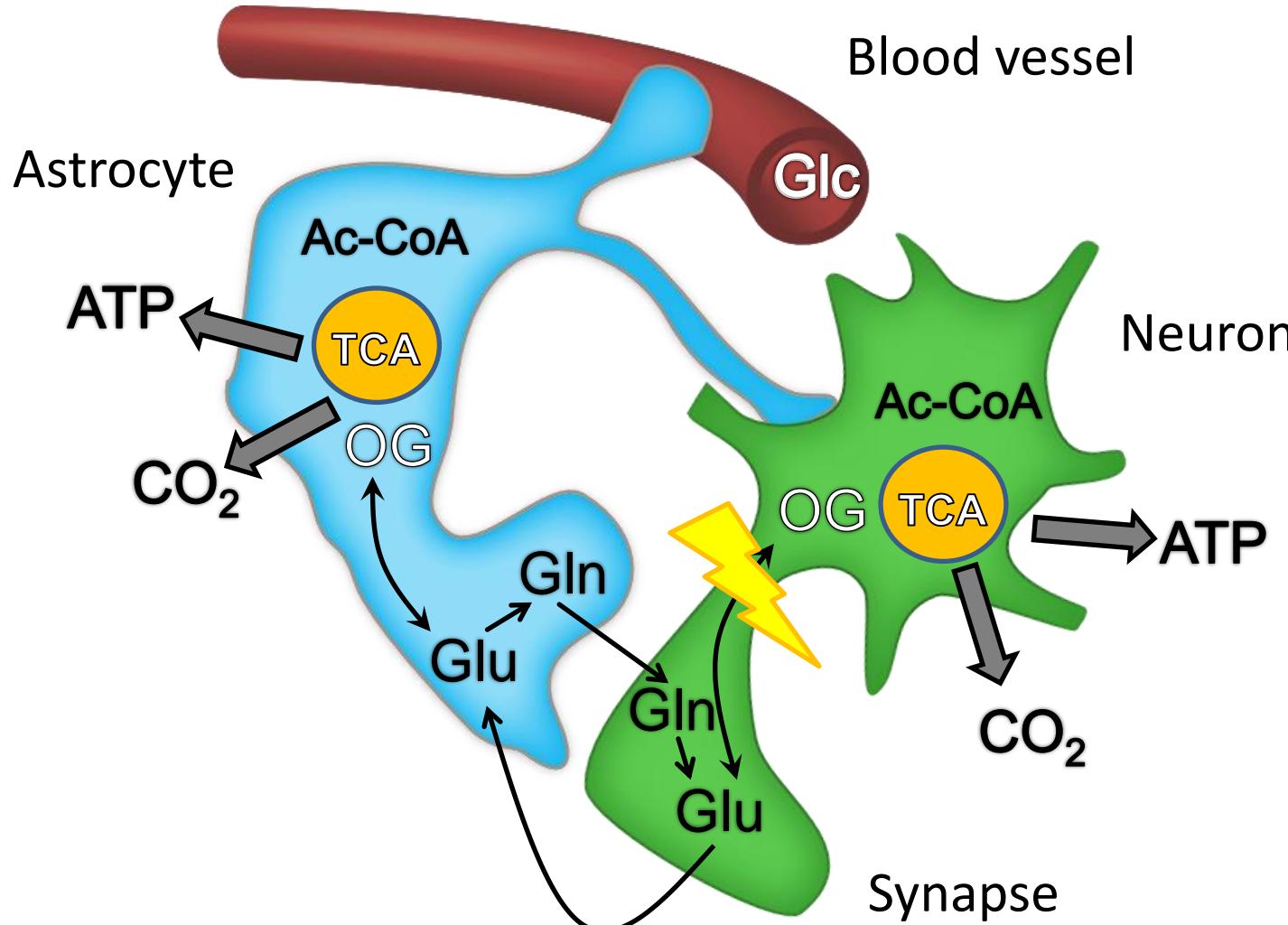
UNDERLYING BIOCHEMICAL MECHANISMS ?

TCA cycle: (or Krebs cycle)

Main oxidative reaction chain producing ATP for the various cellular needs in energy.

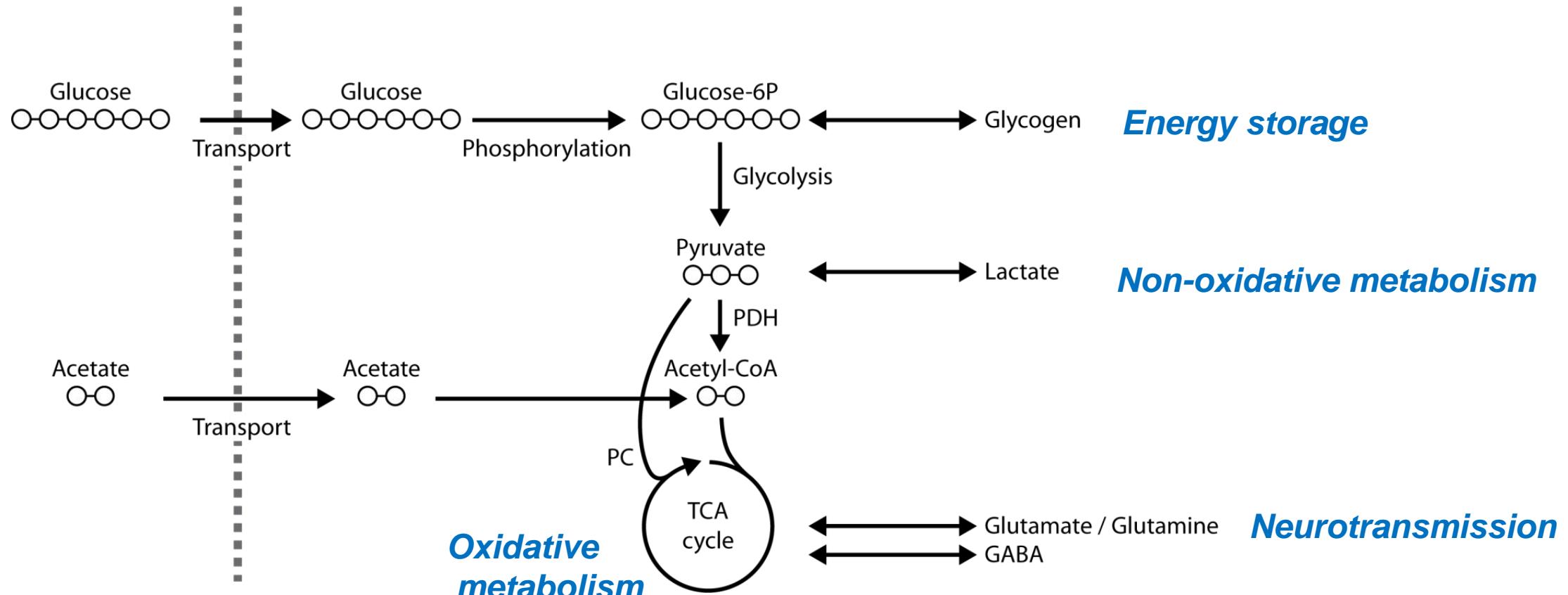


BRAIN ENERGY METABOLISM: UNDERLYING BIOCHEMICAL MECHANISMS ?

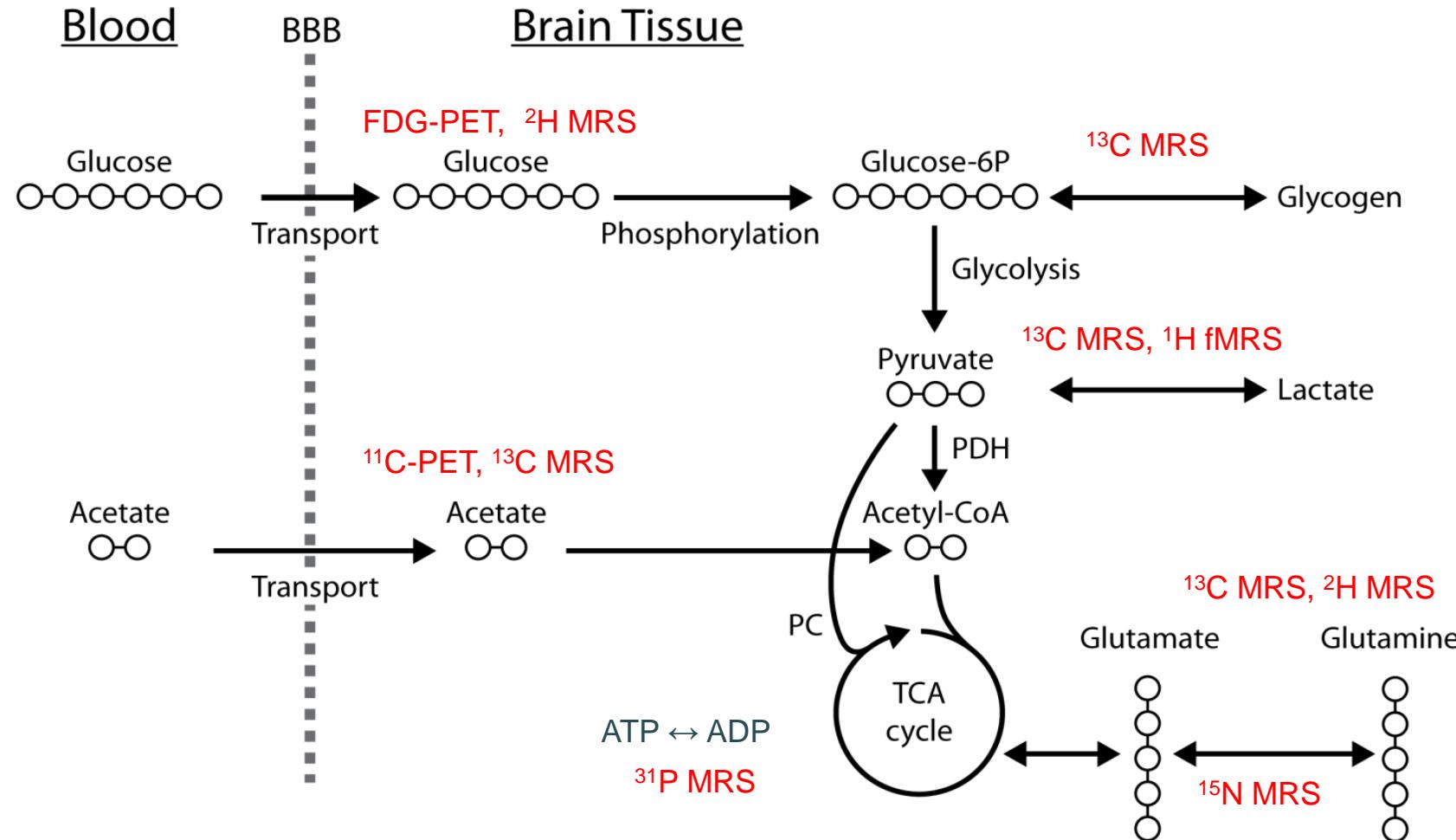


BIOCHEMICAL MOTIVATIONS

Network:



MAIN BIOCHEMICAL PATHWAYS IN BRAIN ENERGY METABOLISM



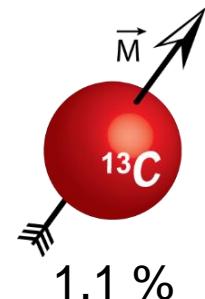
OVERVIEW ^{13}C MRS *IN VIVO*

The Carbon nucleus

- Spin $I=1/2$

- Natural abundance

98.9 %

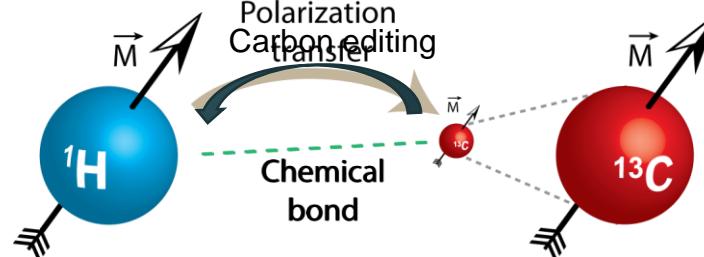


1.1 %

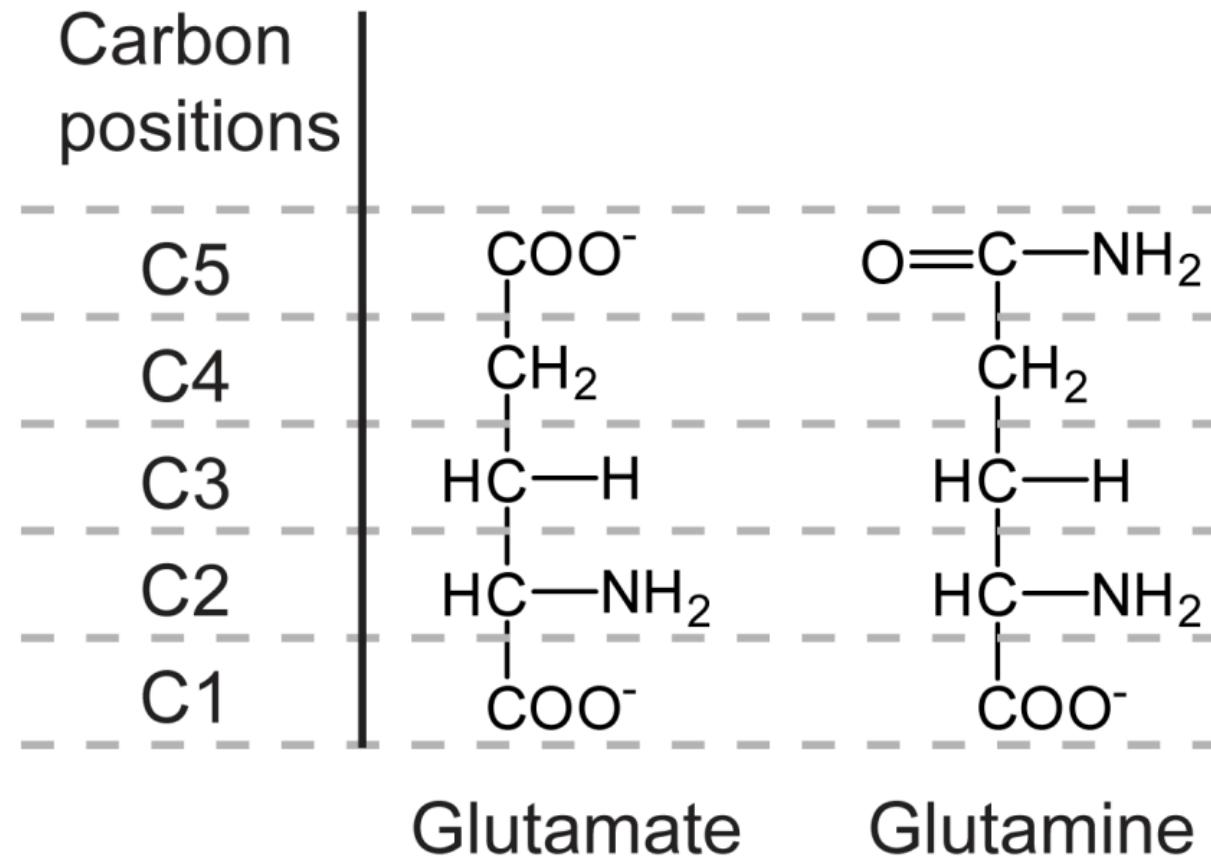
- Low sensitivity

$$\gamma(^{13}\text{C}) = 10.7 \text{ MHz/T}$$

$$(\gamma(^1\text{H}) = 42.6 \text{ MHz/T})$$



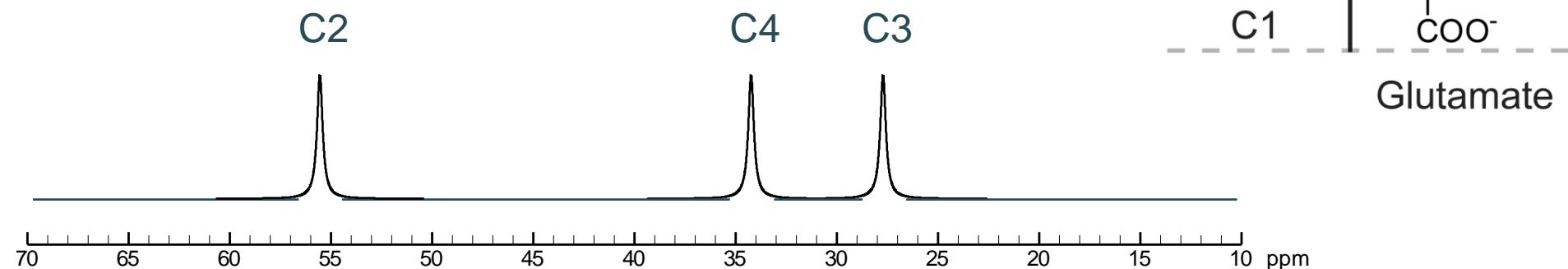
Separate detection of carbon positions



Separate detection of carbon positions

Large chemical shift:

- + Good spectral resolution
- + Flat baseline
- Large chemical shift artefacts

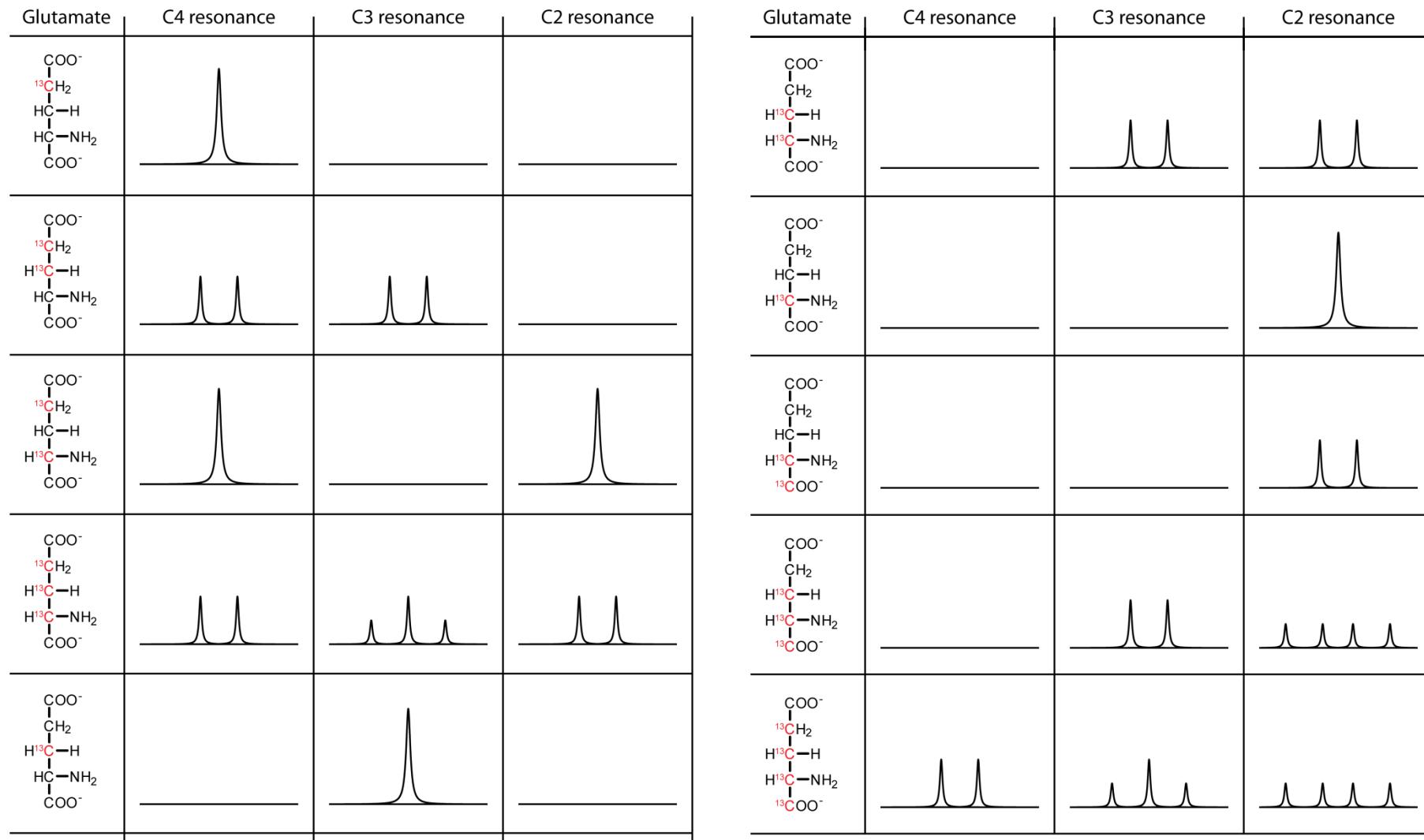


Methine groups

Methylene groups

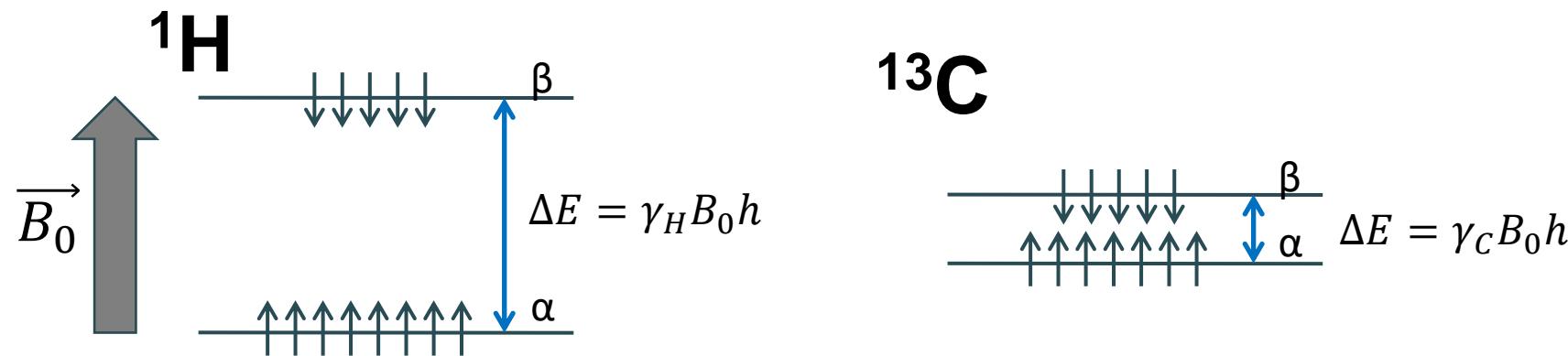
Carboxyl / amide groups (C5 and C1) (170-185 ppm)

Detection of multiple ¹³C labelling



¹³C MRS NMR SIGNAL STRENGTH

- Zeeman energy: $\gamma_C \approx \frac{1}{4} \gamma_H$



Boltzmann distribution: $(n_\alpha - n_\beta) \approx \left(\frac{nh\gamma B_0}{2kT} \right)$

- Amplitude of the magnetization: $M_0 = (n_\alpha - n_\beta) \mu_z = (n_\alpha - n_\beta) \gamma \frac{h}{2}$

- Total magnetization: $M_0 = n \frac{1}{2} (\gamma h)^2 \left(\frac{B_0}{2kT} \right) \propto \gamma^2$

$$M_0(^{13}\text{C}) \approx \frac{1}{16} M_0(^1\text{H})$$

THEORETICAL GAIN IN SNR

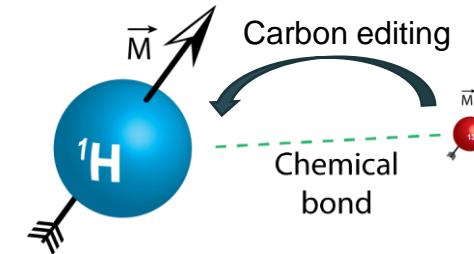
	¹ H-[¹³ C]MRS	Polarization transfer ¹³ C MRS
<u>Polarization</u> $\Delta E \propto \gamma$	¹ H	¹ H
<u>Magnetic moment</u> $\mu_z \propto \gamma$	¹ H	¹³ C
<u>Detection sensitivity</u> $emf \propto freq. \propto \gamma$ Noise $\propto \gamma^{-1/2}$	¹ H	¹³ C
Overall SNR	$\propto \gamma_H^{5/2} (32x)$	$\propto \gamma_H \gamma_C^{3/2} (4x)$

(neglecting T1 saturation effects)

¹³C MRS ACQUISITION STRATEGIES

Indirect ¹³C detection

- Indirect ¹H-[¹³C] localized MRS detection
 - **High sensitivity** of ¹H detection
(of advantage for higher temporal resolution / lower enrichment studies)
-> **lower chemical shift range**



Indirect ¹³C MRS spectroscopy:
([2-¹³C] Ace infusion)

BISEP-SPECIAL ¹H-[¹³C]MRS (at 14T)



Xin et al., MRM, 2010

C I B M . C H

¹³C MRS ACQUISITION STRATEGIES

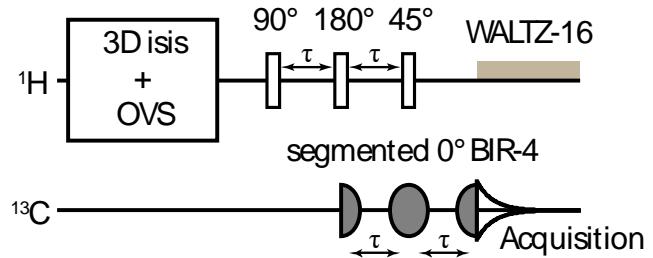
Direct ¹³C detection

■ Direct ¹³C localized MRS detection with polarization transfer

- Higher chemical shift range of ¹³C spectra (many carbon resonances measurable)
-> labelling positions clearly dissociable

Localized DEPT:

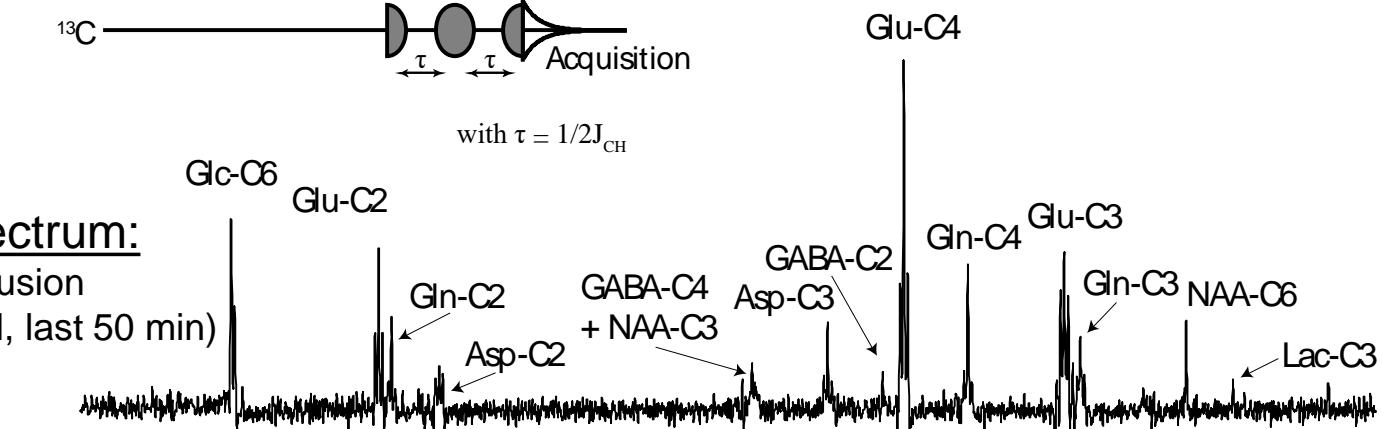
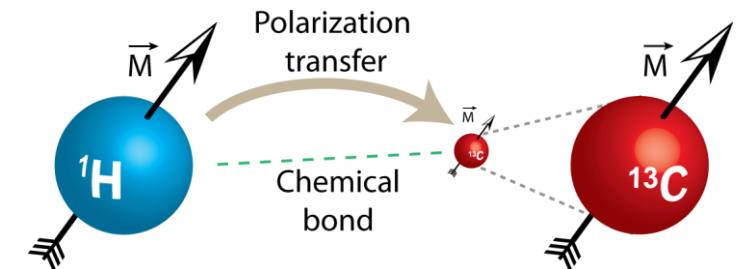
Henry et al.,
MRM, 2003



with $\tau = 1/2J_{CH}$

¹³C MRS spectrum:

([1,6-¹³C] Glc infusion
rat, 9.4T, 320 μ l, last 50 min)



MISSING INTERNAL REFERENCE

¹H MRS : water signal

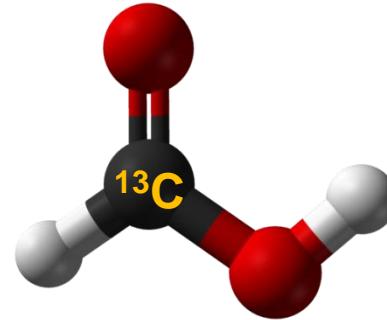
- Frequency reference
- Power calibration
- Concentration reference
- ...

MISSING INTERNAL REFERENCE

¹³C MRS : no carbon in water

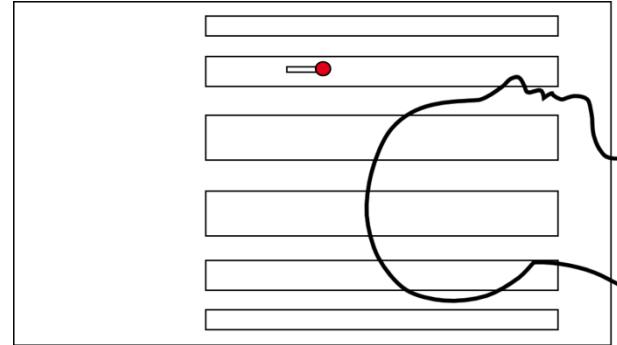
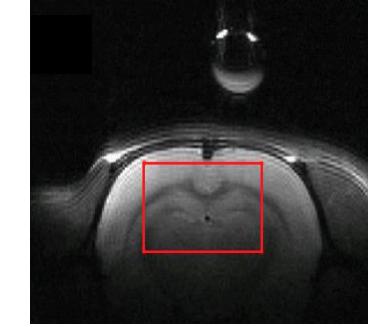
- No frequency reference
- No reference for power calibration
- No concentration reference
- ...

¹³C-FORMIC ACID CALIBRATION



Formic acid-¹³C

95 wt. % in H₂O, 99 atom % ¹³C

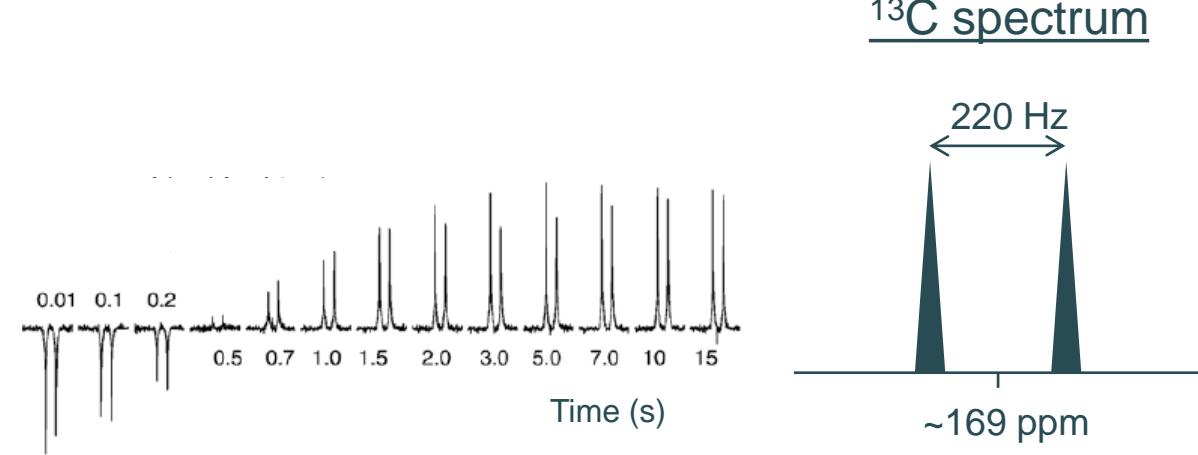


T₁ relaxation:

Reduced from ~6 to **0.5 second** with Gd contrast agent
(Dotarem)

$$\frac{1}{T_{1,obs}} = \frac{1}{T_1} + r_1[CA]$$

with [CA] the concentration of contrast agent.



Metabolic modelling is a two-step process.

1. The metabolic system is formalized as a schematic, taking into account the current physiological and biochemical knowledge on the biological system. It is adapted to the available information, since part of the system is not measurable or not relevant for the measured processes.

→ set of mathematical equations
2. The model is used to estimate the metabolic parameters involved in the studied metabolic process by fitting it to the experimental data.
 - appropriateness of the model
 - parameter values describing the current data
 - precision of these estimations.

Feedback

TRACER / TRACEE

- The study of brain metabolism with dynamic labelling studies is intrinsically linked with the use of a particular tracer.

Definitions: **A tracer** is defined as an isotope-labelled and detectable molecule, used to follow the fate of unlabelled chemical species that it is transformed into through metabolism.

The tracee is the corresponding unlabelled species, whose dynamics is of interest in the analysed metabolic process.

- The chemical structure of the tracer is commonly close to the chemical structure of the tracee (identical in the case of ^{13}C MRS)

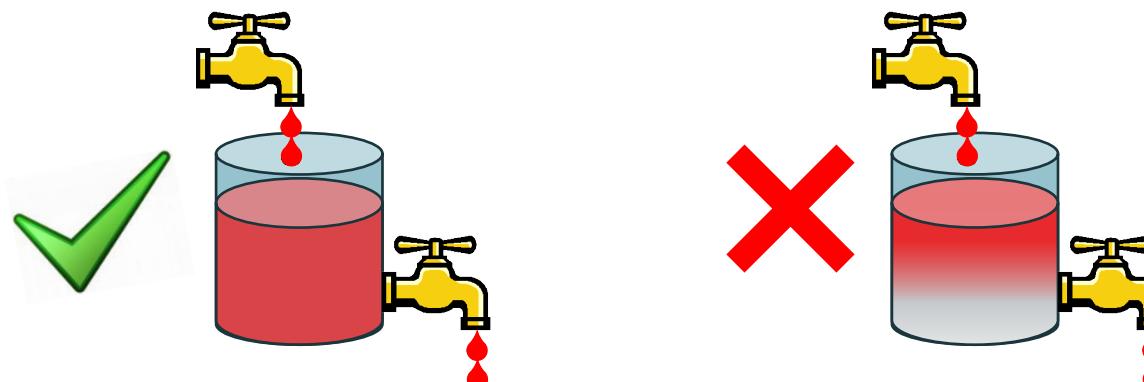
FDG / glucose $[1,6\text{-}^{13}\text{C}]$ glucose / glucose $[2\text{-}^{13}\text{C}]$ acetate / acetate

Characteristics of the ideal tracer :

1. It should be detectable by the applied bioimaging measurement technique and should be measurable quantitatively as a concentration (mol of tracer/ g) or as a fractional enrichment ([amount of tracer] / [amount of tracer and tracee])
2. Its introduction should minimally affect the biochemical system that is studied
3. Its metabolism should be identical to the metabolism of the tracee
4. When entering a metabolic pool, it should mix uniformly and instantly throughout
5. The natural abundance of the tracer should be very low, to avoid additional measurement errors due to background contamination
6. It should provide chemical specificity, in the sense that the detection system should be able to determine in which molecule and in which position in this molecule the labelled isotope is located
7. It should be safe for the experimentalist and for the subject and should be detectable in the tissue in a non-destructive way
8. It should enable a site-specific detection, meaning that the researcher should be able to measure the uptake and metabolism of the tracer locally in any physical space of a chosen organ

COMPARTMENTAL MODELLING

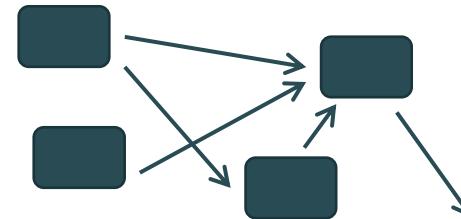
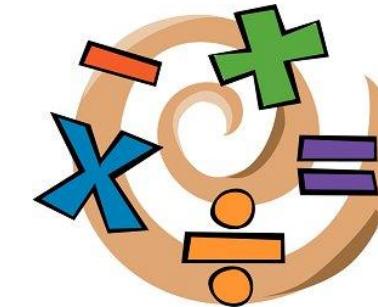
- The different biochemical species (or group of species) are modelled as idealized stores of substance called metabolic pools (also called labelling pools)
 - Describes molecules that share the same behaviour
 - Each pool is supposed homogeneous (instantaneous mixing of the tracer with the tracee, uniform volume distribution)
- The probability of leaving the labelling pool through any of the available effluxes is the same for all the molecules present in the pool



OBJECTIVES OF THE MODEL

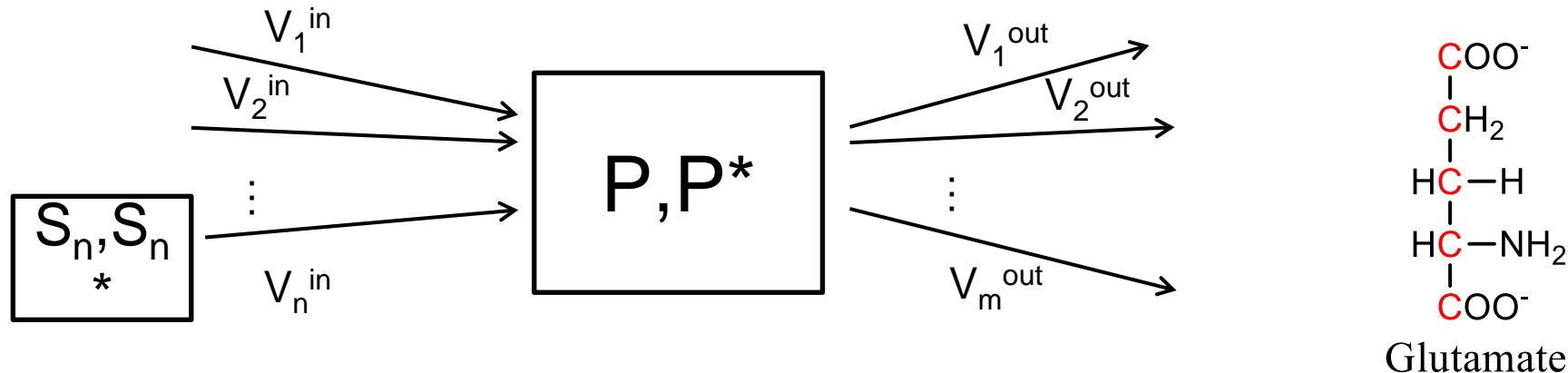
The objectives of a metabolic model can be the following:

- identification the structure of the system
- estimation of the value of the internal metabolic parameters and their precision
- prediction of the response of the system to external factors



MATHEMATICAL DESCRIPTION OF COMPARTMENTAL MODELS

The elementary unit, the labelling pool :

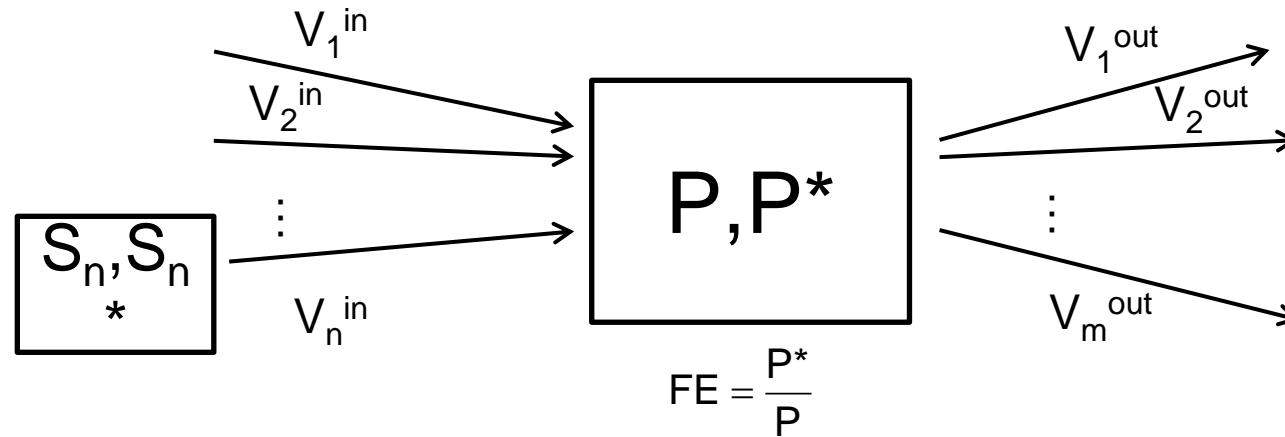


- Represents a labelling position in a given molecule, or simply a labelled molecule
- Is characterized by :
 - Its total concentration (P) in [$\mu\text{mol/g}$]
 - Its labelled concentration (P^*) in [$\mu\text{mol/g}$] (typically ^{13}C), or equivalently by its fractional enrichment : [-], varying between 0 and 1

$$FE = \frac{P^*}{P}$$

MATHEMATICAL PRINCIPLES OF COMPARTMENTAL MODELLING

The labelling equations:



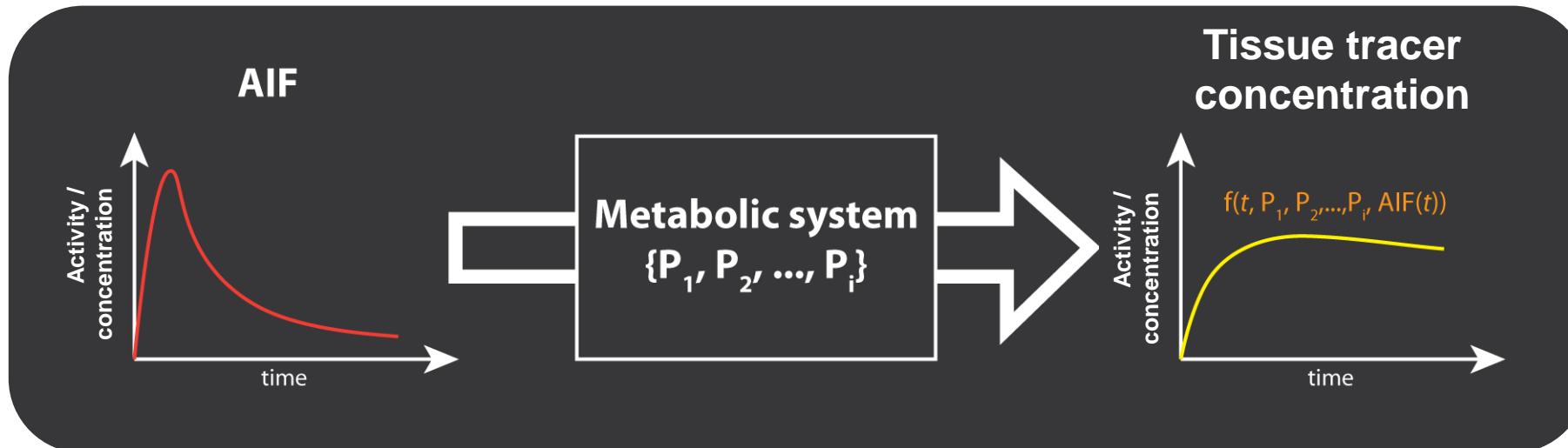
In compartment modelling of PET data :

$$\frac{dP^*(t)}{dt} = \sum_i K_i^{in} \cdot S_i^*(t) - \sum_j K_j^{out} \cdot P^*(t) \quad \text{with } K_i^{in} = \frac{V_i^{in}}{S} \text{ and } K_j^{out} = \frac{V_j^{out}}{P}$$

MATHEMATICAL PRINCIPLES OF COMPARTMENTAL MODELLING

The measurement of the substrate concentration:

The arterial input function (AIF)

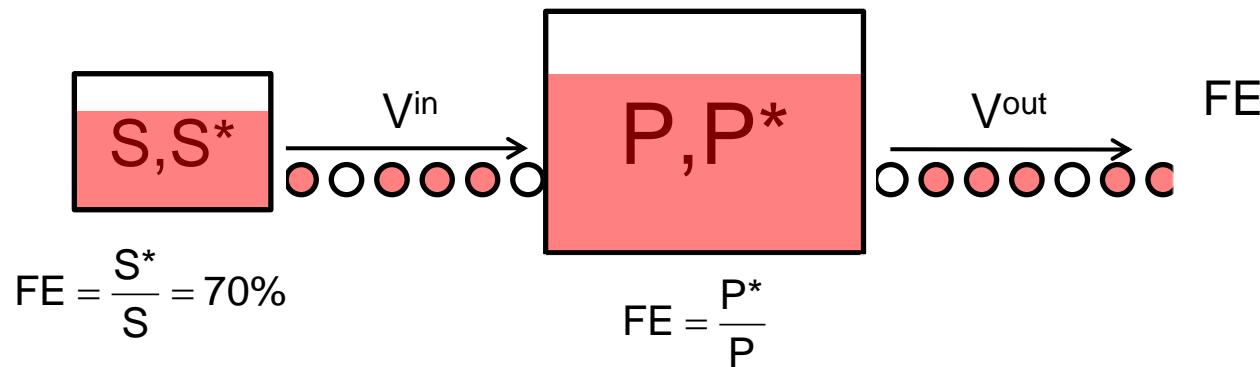
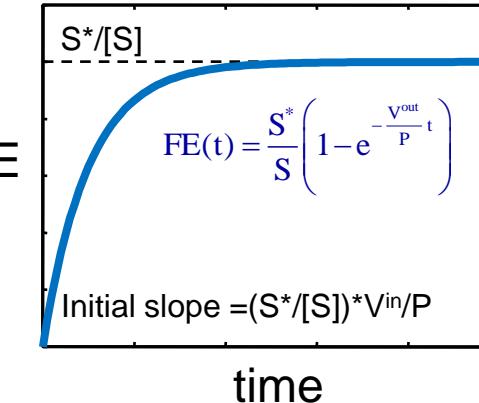


The AIF needs to be measured continuously over the entire infusion period or

The infusion protocol is designed to reach a desired input function.

SIMPLE ONE-PRODUCT POOL EXAMPLE

The labelling equations:



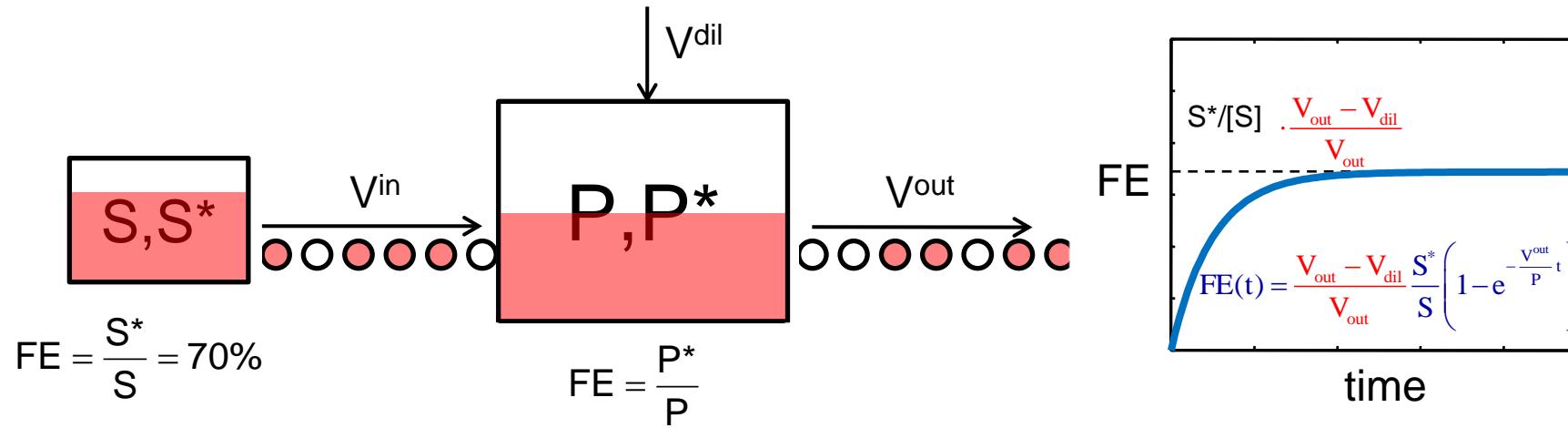
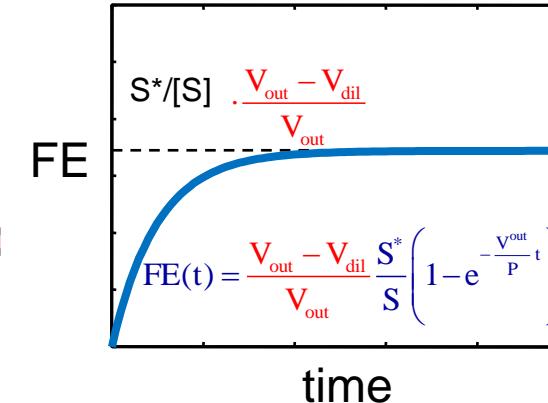
Mass balance equation : $\frac{dP(t)}{dt} = V^{\text{in}} - V^{\text{out}} = 0$ (metabolic steady-state)

Labelling equation : $\frac{dP^*(t)}{dt} = V^{\text{in}} \cdot \frac{S^*(t)}{S} - V^{\text{out}} \cdot \frac{P^*(t)}{P}$

(we assume $P^*(0) = 0$)

SIMPLE ONE-PRODUCT POOL EXAMPLE

The labelling equations:



$$\left[\begin{array}{l} \text{Mass balance equation : } \frac{dP(t)}{dt} = V^{\text{in}} + V^{\text{dil}} - V^{\text{out}} = 0 \quad (\text{metabolic steady-state}) \\ \text{Labelling equation : } \frac{dP^*(t)}{dt} = V^{\text{in}} \cdot \frac{S^*(t)}{S} - V^{\text{out}} \cdot \frac{P^*(t)}{P} \end{array} \right.$$

(we assume $P^*(0) = 0$)

MATHEMATICAL PRINCIPLES OF COMPARTMENTAL MODELLING

General equations for a compartmental model:

Mass balance equation :
$$\frac{d}{dt} \begin{pmatrix} P_1(t) \\ P_2(t) \\ \dots \\ P_n(t) \end{pmatrix} = \begin{pmatrix} V_{S1} & V_{21} & \dots & V_{n1} \\ V_{S2} & V_{22} & \dots & V_{n2} \\ \dots & \dots & \dots & \dots \\ V_{Sn} & V_{2n} & \dots & V_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix} \text{ (metabolic steady-state)} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

Labelling equation :
$$\frac{d}{dt} \begin{pmatrix} P_1^*(t) \\ P_2^*(t) \\ \dots \\ P_n^*(t) \end{pmatrix} = \begin{pmatrix} V_{S1} & V_{21} & \dots & V_{n1} \\ V_{S2} & V_{22} & \dots & V_{n2} \\ \dots & \dots & \dots & \dots \\ V_{Sn} & V_{2n} & \dots & V_{nn} \end{pmatrix} \begin{pmatrix} S^*(t)/[S] \\ P_2^*(t)/[P_2] \\ \dots \\ P_n^*(t)/[P_n] \end{pmatrix}$$

System of linear differential equations with constant coefficients

Numerical solutions

MATHEMATICAL PRINCIPLES OF COMPARTMENTAL MODELLING

Solutions of the labelling equations system: ANALYTICAL ?

- The mass balance matrix equation fixes the relation between the fluxes (continuity of the system, no loss or creation of molecules in the system)
- The labelling matrix equation must be solved by taking into account the mass balance constraints
 - In order to decouple the system of differential equations, the labelling matrix needs to be diagonalised
 - The dimension of the matrix is equal to the number of pools in the model
 - This requires the factorization of the characteristic polynomial, of same degree as the dimension of the matrix

“There is no general solution in radicals to polynomial equations of degree five or higher”

Labelling equation :

$$\frac{d}{dt} \begin{pmatrix} P_1^*(t) \\ P_2^*(t) \\ \dots \\ P_n^*(t) \end{pmatrix} = \begin{pmatrix} V_{s1} & V_{21} & \dots & V_{n1} \\ V_{s2} & V_{22} & \dots & V_{n2} \\ \dots & \dots & \dots & \dots \\ V_{sn} & V_{2n} & \dots & V_{nn} \end{pmatrix} \begin{pmatrix} S^*(t) / [S] \\ P_2^*(t) / [P_2] \\ \dots \\ P_n^*(t) / [P_n] \end{pmatrix}$$

Niels Henrik Abel

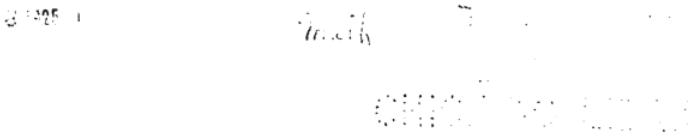
(1802-1829)

Numerical solutions

MATHEMATICAL PRINCIPLES OF COMPARTMENTAL MODELLING

Niels Henrik Abel

(1802-1829)



Mémoire
sur
les équations algébriques
où on démontre l'impossibilité de la résolution de l'équation générale
du cinquième degré
par
N. H. Abel.

Christania.
De l'imprimerie de Groen Dahl.
1824.

Démonstration
de l'impossibilité de la résolution générale des équations du
cinquième degré.

Les géomètres se sont beaucoup occupés de la résolution générale des équations algébriques, et plusieurs d'entre eux ont cherché à en prouver l'impossibilité; mais si je ne me trompe pas, on n'a pas y réussi jusqu'à présent. J'ose donc espérer que les géomètres veulent recevoir avec bienveillance ce mémoire qui a pour but de remplir cette lacune dans la théorie des équations algébriques.

Soit

$$y^5 - ay^4 + by^3 - cy^2 + d - e = 0$$

l'équation générale du cinquième degré et supposons qu'elle est résoluble algébriquement c'est-à-dire qu'on peut exprimer y par une fonction des quantités a b c d et e , formée par des radicaux. Il est clair qu'on peut dans ce cas mettre y sous cette forme:

$$y = p + p_1 R^{\frac{1}{m}} + p_2 R^{\frac{2}{m}} + \dots + p_{m-1} R^{\frac{m-1}{m}}$$

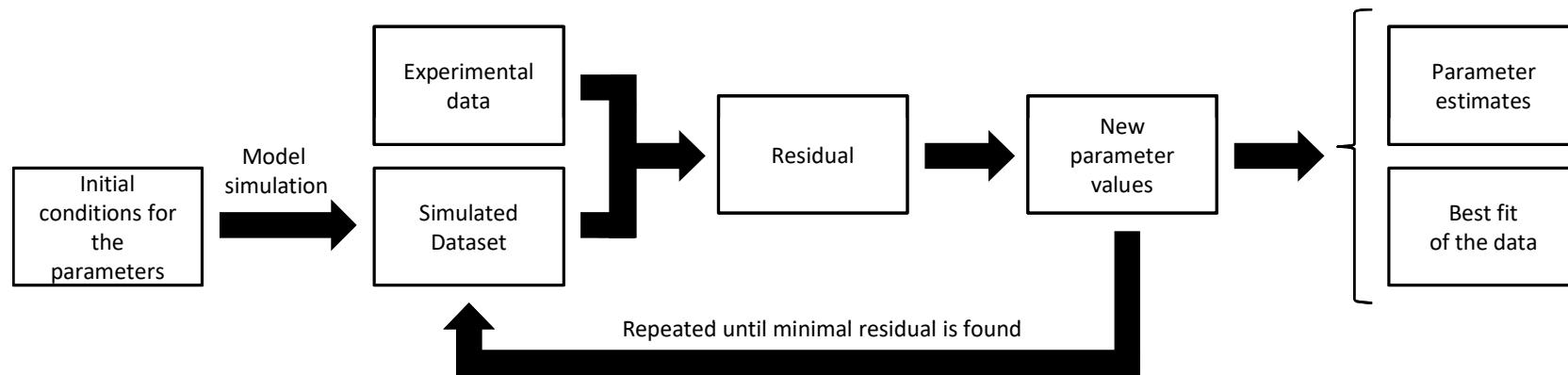
m étant un nombre premier et R p p_1 p_2 etc. des fonctions de la même forme que y , et ainsi de suite jusqu'à ce qu'on parviendra à des fonctions rationnelles des quantités a b c d et e . On peut aussi supposer qu'il est impossible d'exprimer $R^{\frac{1}{m}}$ par une fonction rationnelle des quantités a b etc. p p_1 p_2 etc., et en mettant $\frac{R}{p_1^m}$ au lieu de R il est clair qu'on peut faire $p_1 = 1$. On aura donc:

$$y = p + R^{\frac{1}{m}} + p_2 R^{\frac{2}{m}} + \dots + p_{m-1} R^{\frac{m-1}{m}}$$

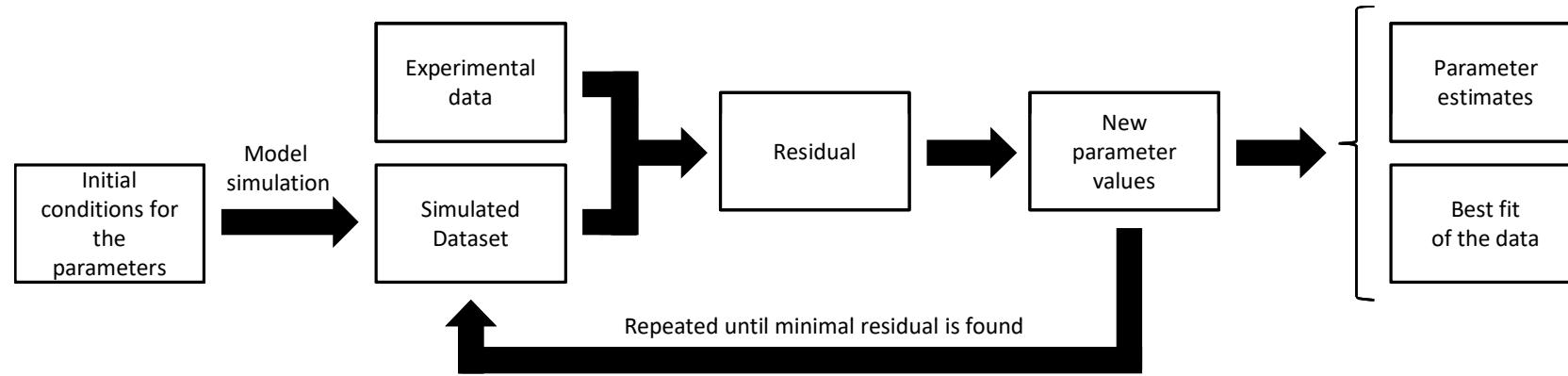
EXTRACTING METABOLIC PARAMETERS FROM THE EXPERIMENTAL DATA

- The mathematics needed in metabolic modelling can be schematically separated into two steps.
 - The first is to find a **general solution to the set of equations** that describes the biochemical model
 - The second is to find the **particular set of model parameters** that describe the observation.

→ REGRESSION



REGRESSION



- A metabolic model is designed to explain the experimental observations and gives a number j of output functions f that describe the j dynamic datasets obtained from the measurement:

$$f_j(a_1, a_2, \dots, a_m, t)$$

- The most common measurement of proximity of the data and simulation is the least-squares criterion:

$$WRSS = \sum_{j=1}^J \sum_{i=1}^n w_j \left[y_j(t_i) - f_j(a_1, a_2, \dots, a_m, t_i) \right]^2$$

where $y_j(t_i)$ are the i sampling points of the j^{th} uptake curve,

w_j the relative weight of the j^{th} curve in the regression. (typically, $w_j = 1/Var_j$)

BASIC PRINCIPLES OF NON-LINEAR REGRESSION

PARAMETER PRECISION AND CORRELATION

- The precision of the parameter estimation can be estimated by error propagation from the regression in terms of the covariance matrix :

$$\mathbf{Cov}(\hat{\mathbf{a}}) = \begin{pmatrix} \text{Var}(\hat{a}_1) & \text{Cov}(\hat{a}_1, \hat{a}_2) & \dots & \text{Cov}(\hat{a}_1, \hat{a}_m) \\ \text{Cov}(\hat{a}_2, \hat{a}_1) & \text{Var}(\hat{a}_2) & \dots & \text{Cov}(\hat{a}_2, \hat{a}_m) \\ \dots & \dots & \dots & \dots \\ \text{Cov}(\hat{a}_m, \hat{a}_1) & \text{Cov}(\hat{a}_m, \hat{a}_2) & \dots & \text{Var}(\hat{a}_m) \end{pmatrix}$$

where $\hat{a}_1, \hat{a}_2, \dots$, are the optimized parameters of the system (metabolic fluxes)

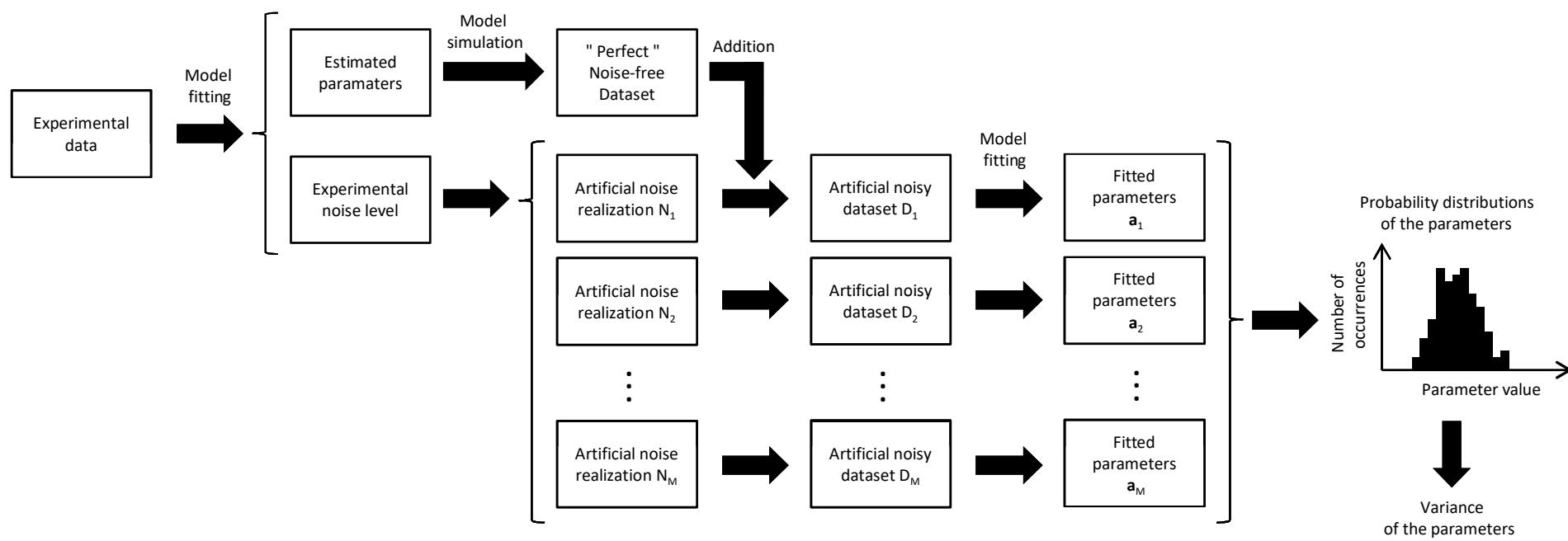
Similarly the correlation matrix of the parameters can be extracted

$$\text{Corr}(\hat{a}) = \begin{pmatrix} 1 & \frac{\text{Cov}(\hat{a}_1, \hat{a}_2)}{\text{SD}(\hat{a}_1) \text{SD}(\hat{a}_2)} & \dots & \frac{\text{Cov}(\hat{a}_1, \hat{a}_m)}{\text{SD}(\hat{a}_1) \text{SD}(\hat{a}_m)} \\ \frac{\text{Cov}(\hat{a}_2, \hat{a}_1)}{\text{SD}(\hat{a}_2) \text{SD}(\hat{a}_1)} & 1 & \dots & \frac{\text{Cov}(\hat{a}_2, \hat{a}_m)}{\text{SD}(\hat{a}_2) \text{SD}(\hat{a}_m)} \\ \dots & \dots & \dots & \dots \\ \frac{\text{Cov}(\hat{a}_m, \hat{a}_1)}{\text{SD}(\hat{a}_m) \text{SD}(\hat{a}_1)} & \frac{\text{Cov}(\hat{a}_m, \hat{a}_2)}{\text{SD}(\hat{a}_m) \text{SD}(\hat{a}_2)} & \dots & 1 \end{pmatrix}$$

BASIC PRINCIPLES OF NON-LINEAR REGRESSION

PARAMETER PRECISION AND CORRELATION

- Non-linearity of the system (model)
-> Sometimes, small effects on the noise of the data can have huge impact on the estimated parameters
- An alternative method to evaluate the precision and correlation of the model parameters is Monte Carlo simulation

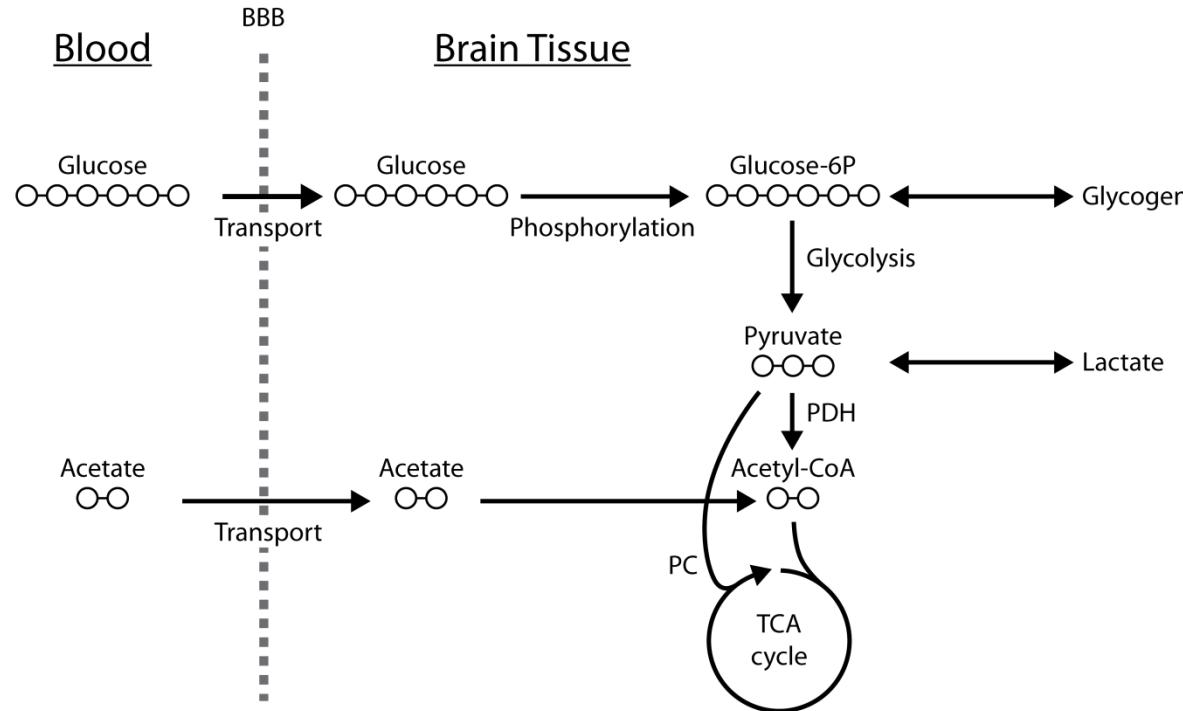


WARNINGS

- Although many optimized algorithm have been developed for non-linear regression, it is in practice never possible to be **completely sure** that the found optimum is a global minimum.
- The fact that the model functions fit the experimental data is necessary, but **not sufficient**.
 - Precision of the model parameters
(sensitivity of the measurement to the given parameters)
 - Correlation between the parameters
(close to ± 1 → parameters not individually identifiable)
- A compartmental model is therefore as good as the assumptions that are incorporated in it.

BIOCHEMICAL MOTIVATIONS

Brain energy metabolism

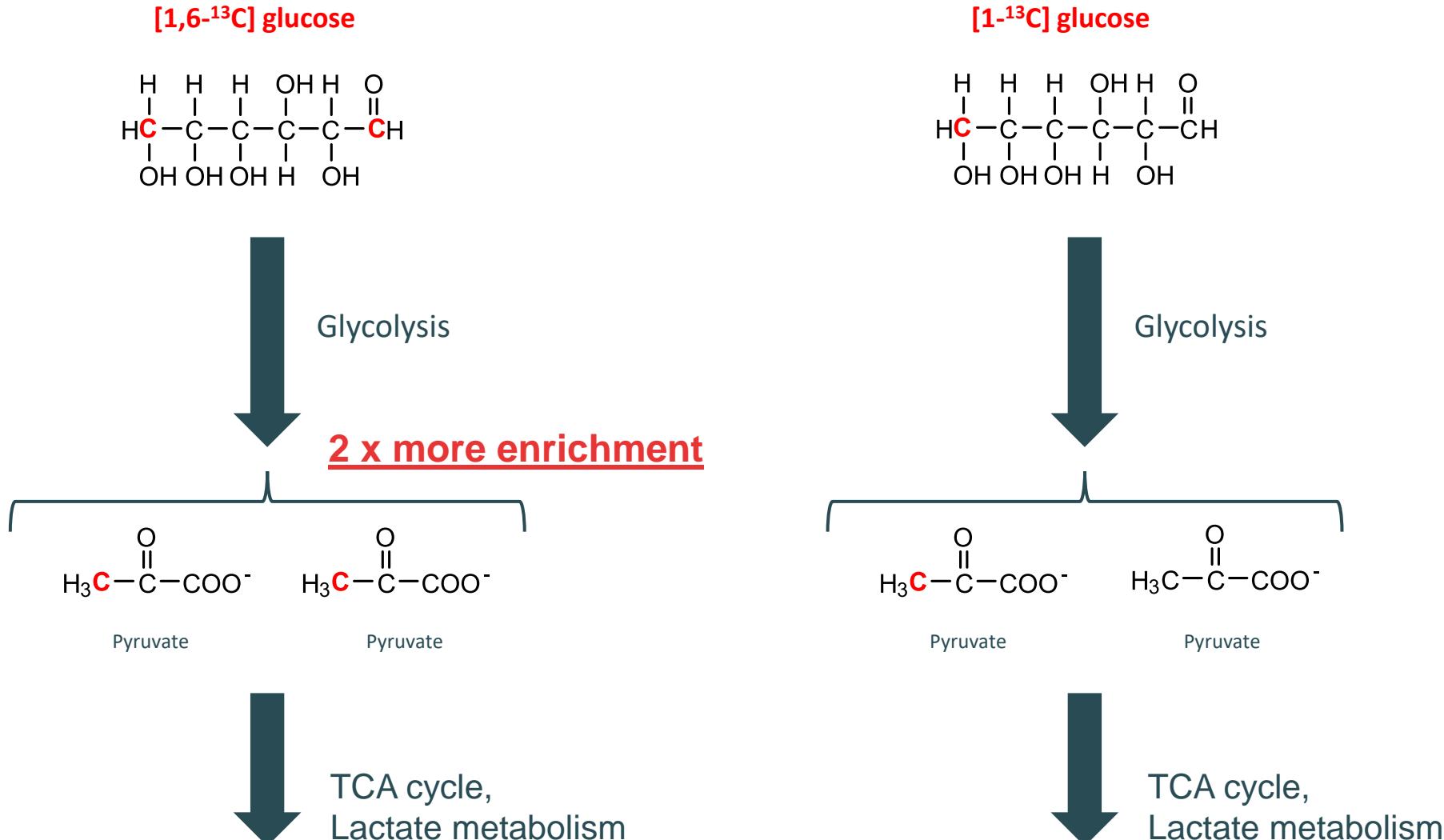


In vivo¹³C NMR spectroscopy:

- ¹³C natural abundance is only 1.1%
- ¹³C can be used as a **tracer** by infusing ¹³C-enriched substrates

BRAIN ENERGY METABOLISM STUDIED WITH ^{13}C MRS

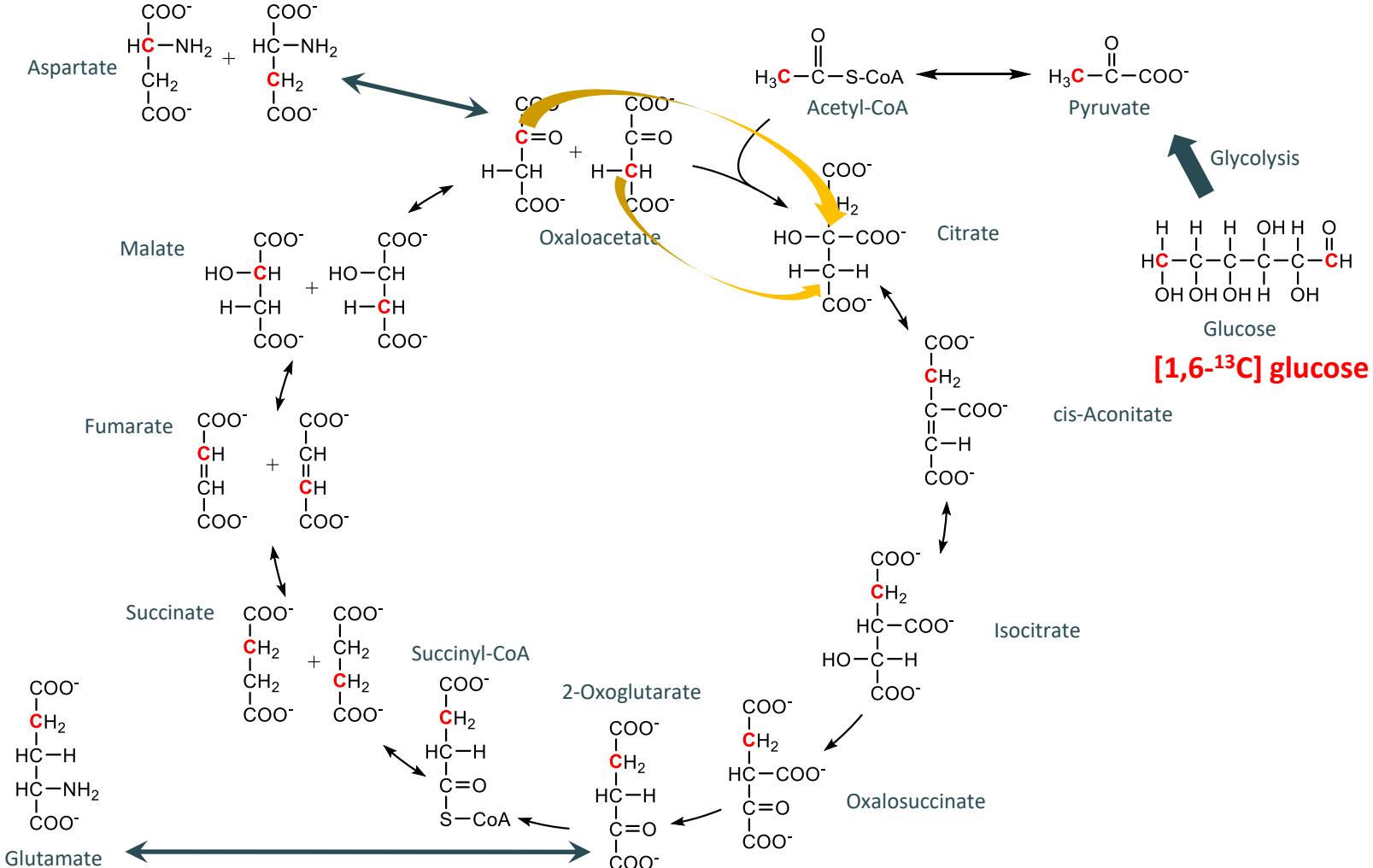
THE TRACER: $[1,6-^{13}\text{C}]$ GLUCOSE OR $[1-^{13}\text{C}]$ GLUCOSE



BRAIN ENERGY METABOLISM STUDIED WITH ^{13}C MRS

TCA CYCLE METABOLISM OF $[1,6-^{13}\text{C}]$ GLUCOSE

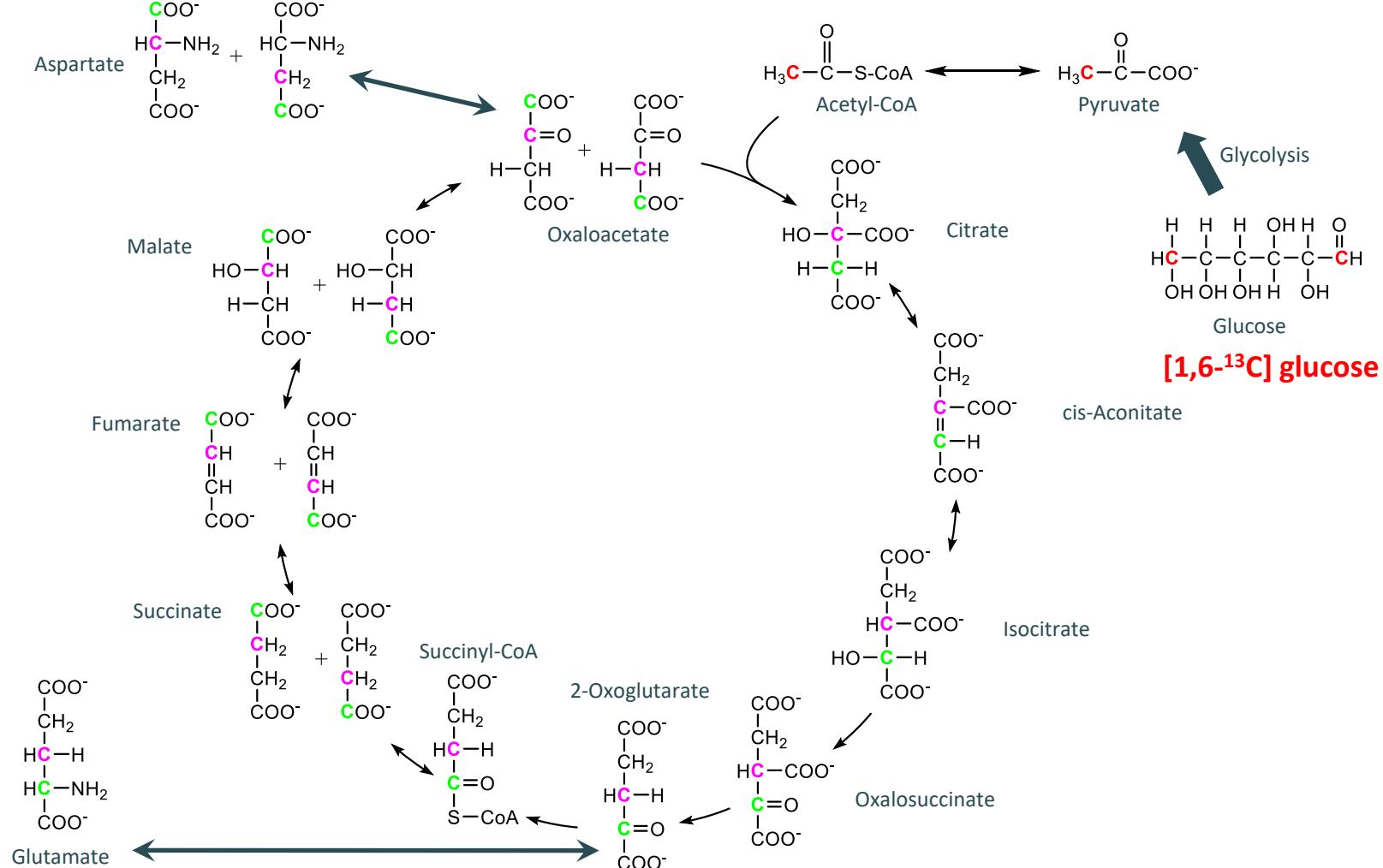
Neuronal TCA cycle (1st turn)



BRAIN ENERGY METABOLISM STUDIED WITH ^{13}C MRS

TCA CYCLE METABOLISM OF $[1,6-^{13}\text{C}]$ GLUCOSE

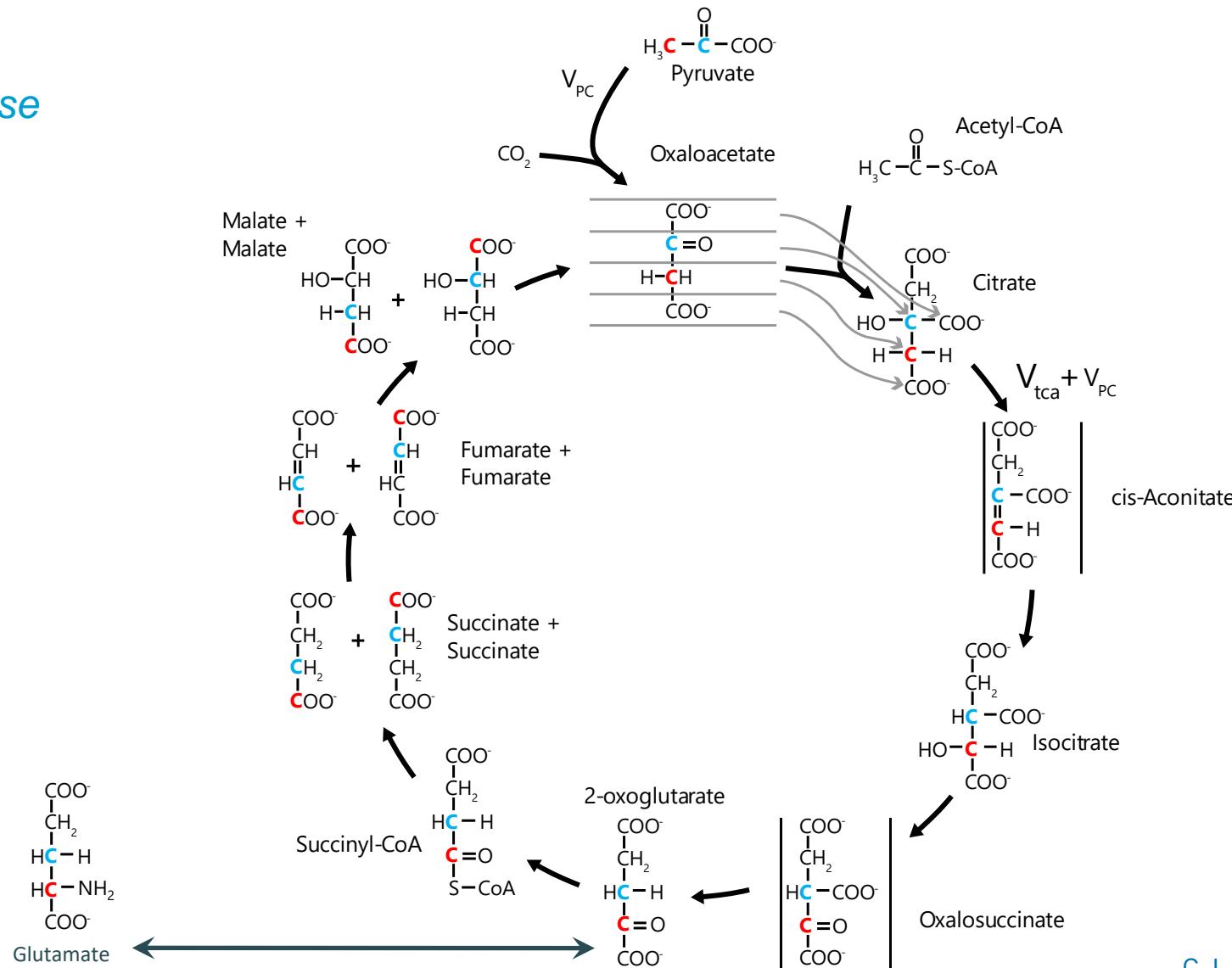
Neuronal TCA cycle (2nd turn)



BRAIN ENERGY METABOLISM STUDIED WITH ^{13}C MRS

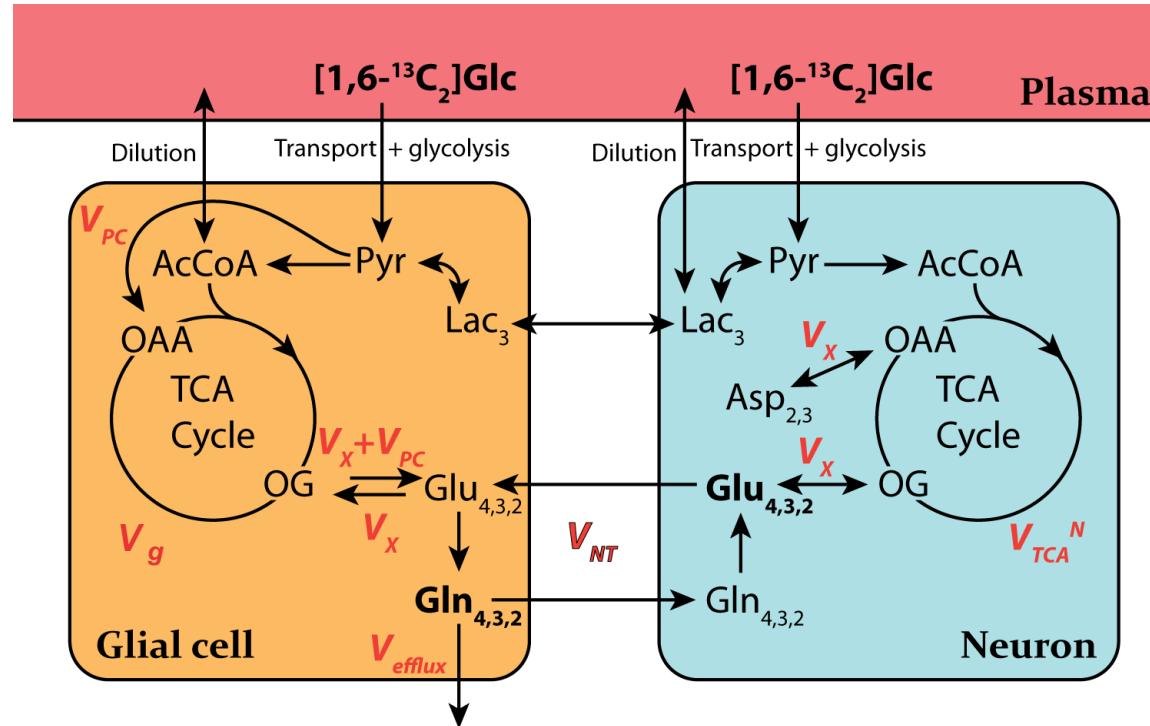
Glial-specific reaction

- *pyruvate carboxylase*



BRAIN ENERGY METABOLISM STUDIED WITH ^{13}C MRS

the two-compartment model



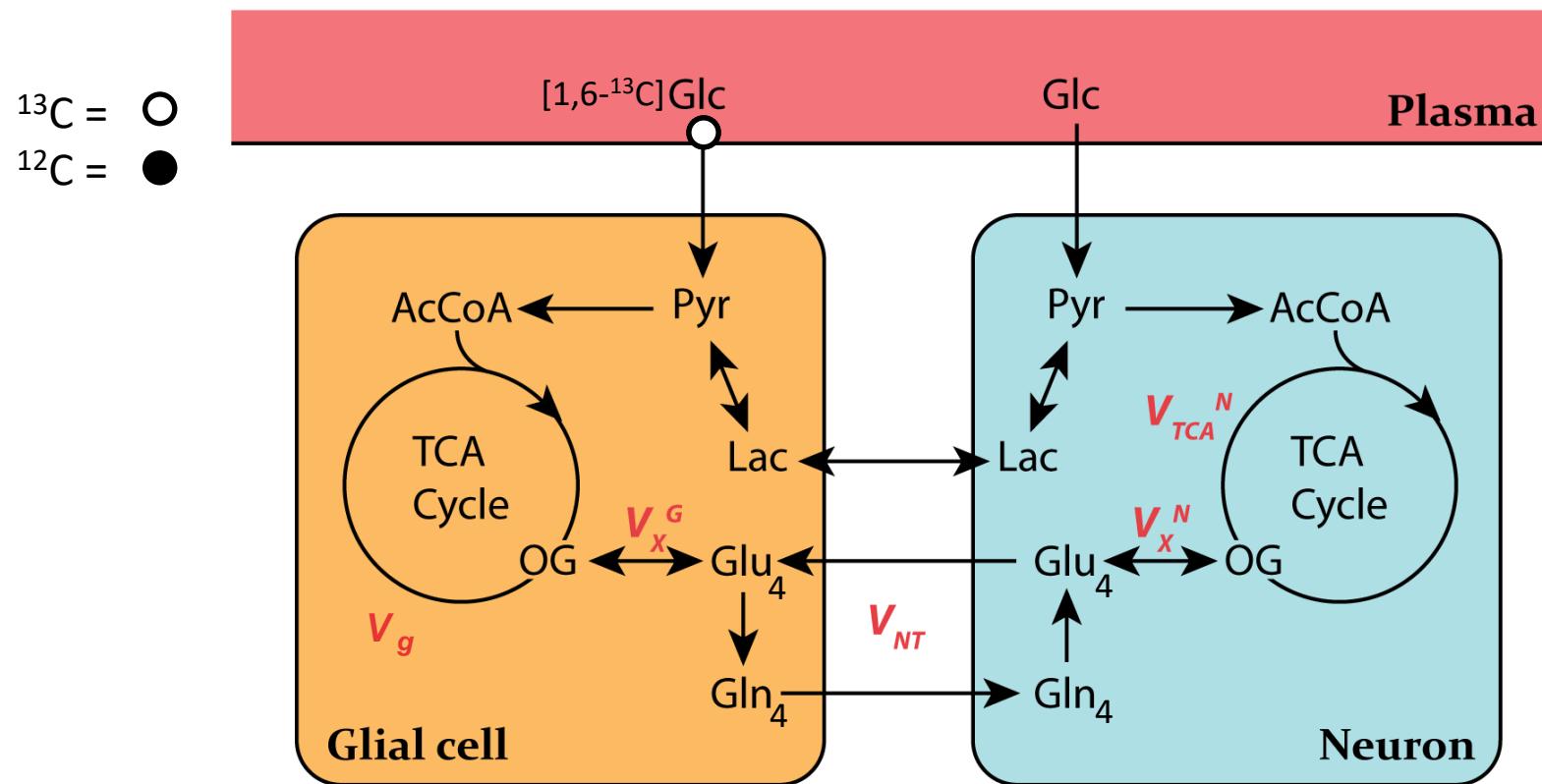
In ^{13}C MRS, the metabolites with sufficient concentration are measured ($> 1\text{mM}$)

→ **Glu, Gln, Asp and Lac**

- [1] Gruetter et al., *Am. J. Physiol. Endocrinol. Metab.*, 2001
- [2] Sibson et al., *J. Neurochem.*, 2001

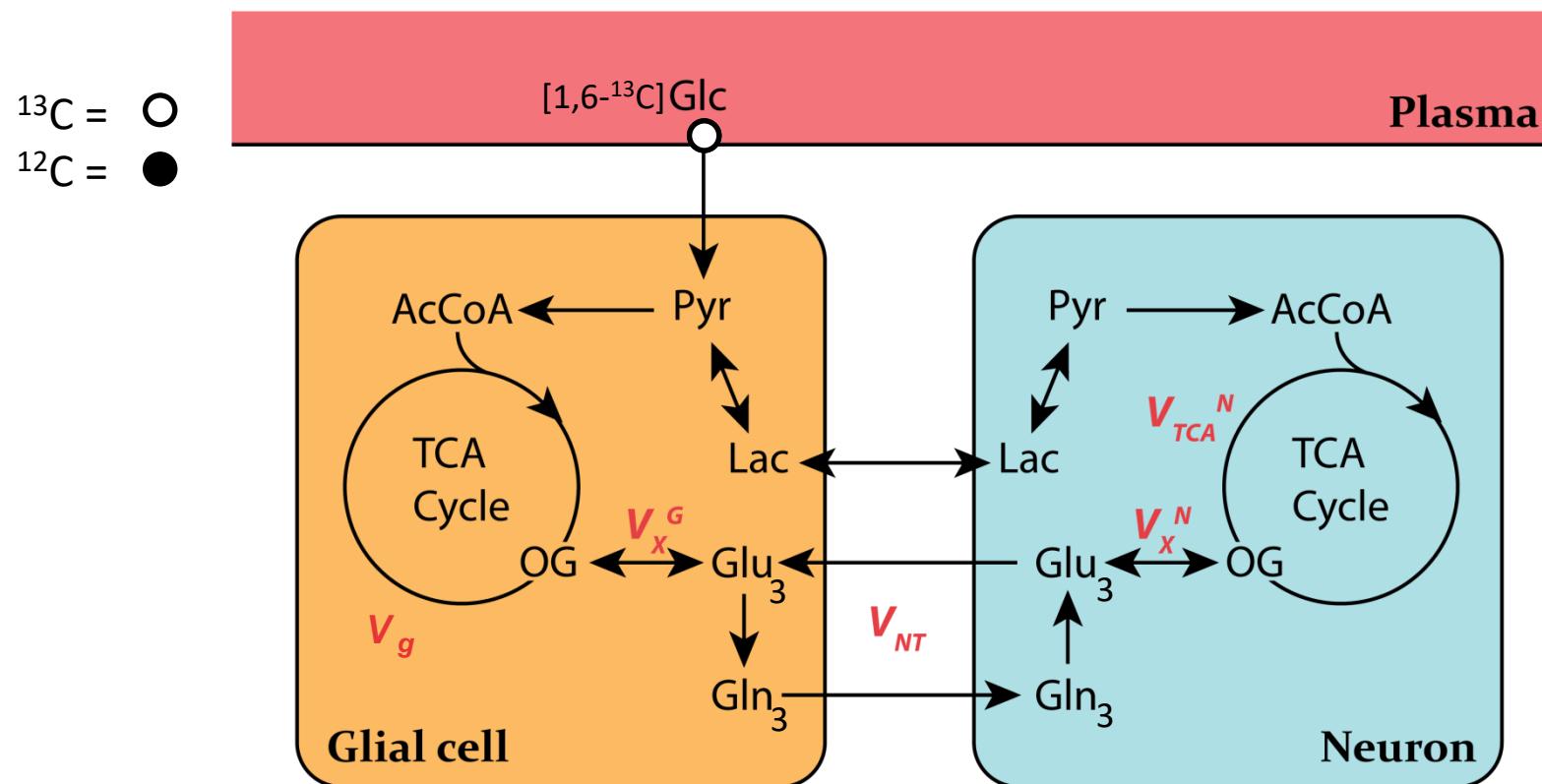
TWO-COMPARTMENT MODELING OF [1,6-13C] GLUCOSE BRAIN METABOLISM

1st TCA cycle turn labeling :



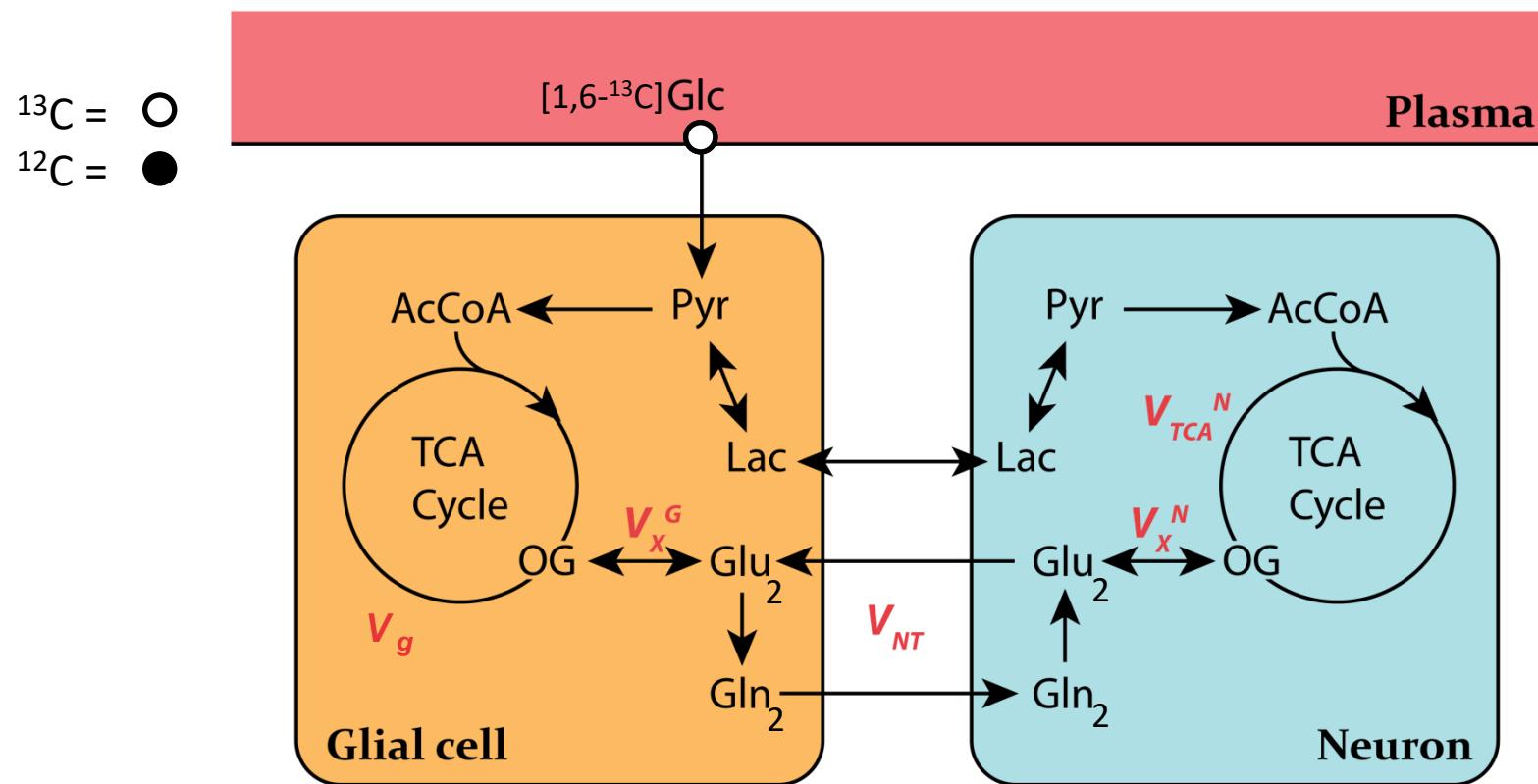
TWO-COMPARTMENT MODELING OF [1,6-13C] GLUCOSE BRAIN METABOLISM

2nd TCA cycle turn labeling :



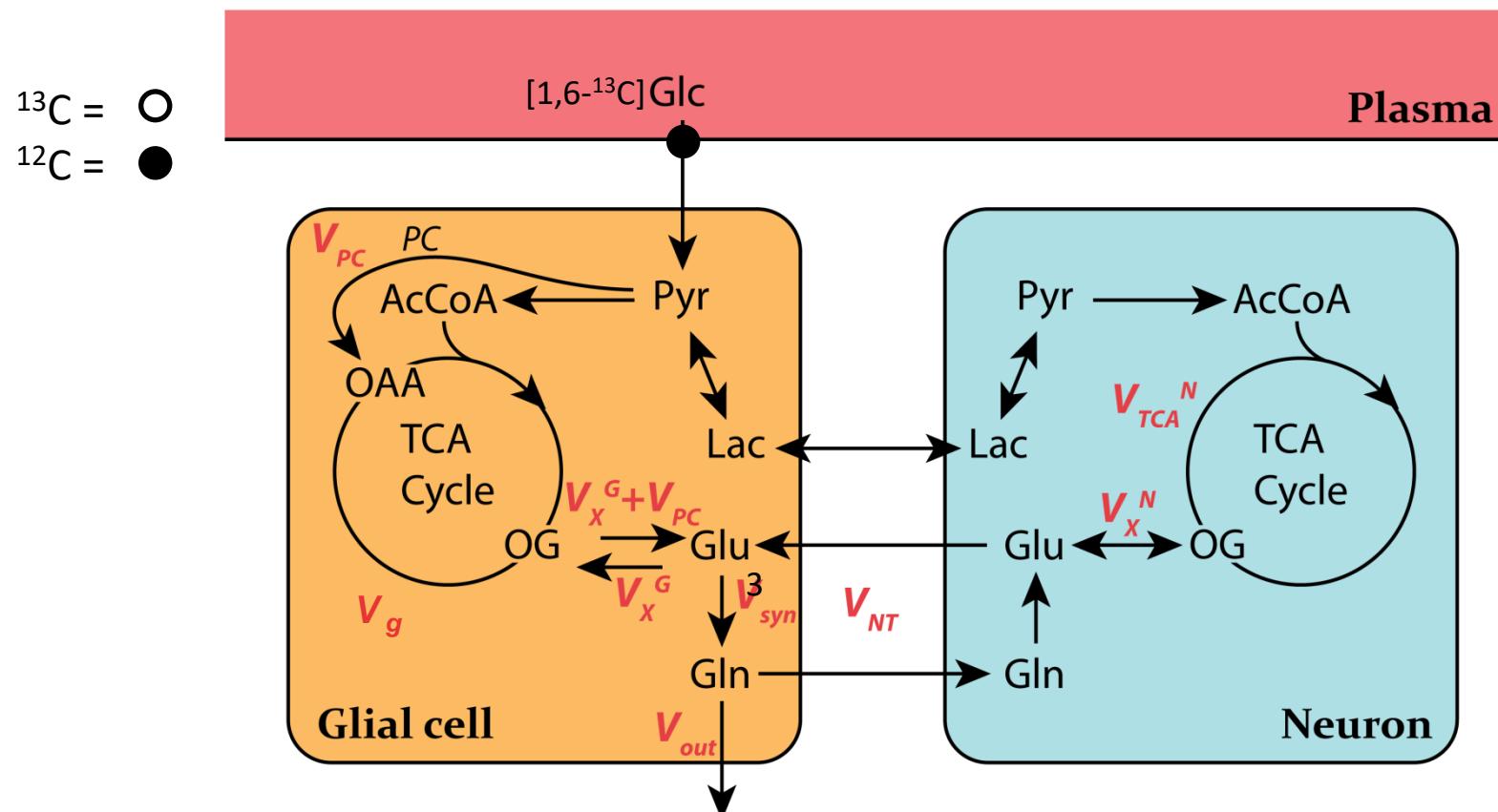
TWO-COMPARTMENT MODELING OF [1,6-13C] GLUCOSE BRAIN METABOLISM

2nd TCA cycle turn labeling :



TWO-COMPARTMENT MODELING OF [1,6-13C] GLUCOSE BRAIN METABOLISM

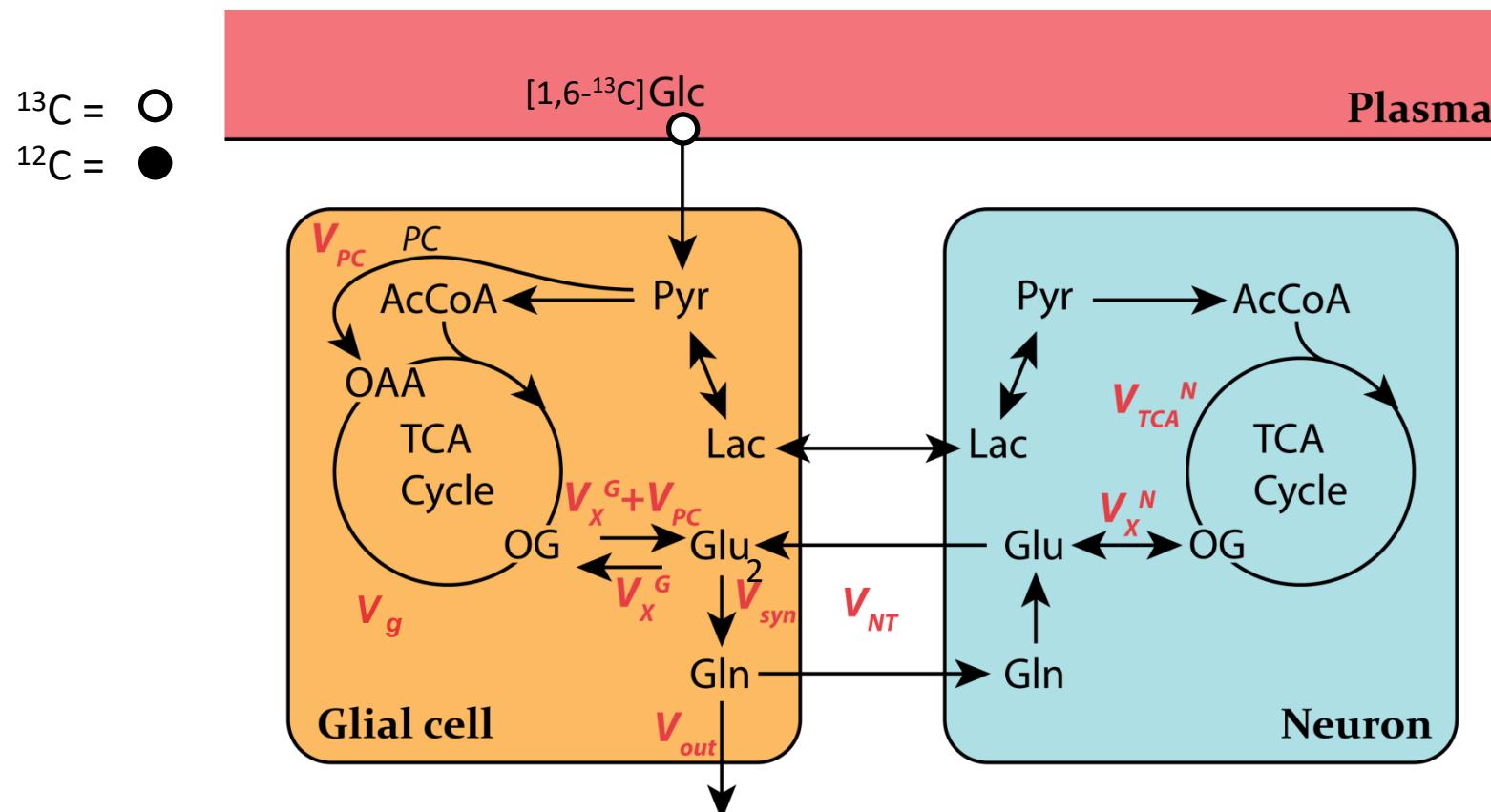
Dilution through PC:



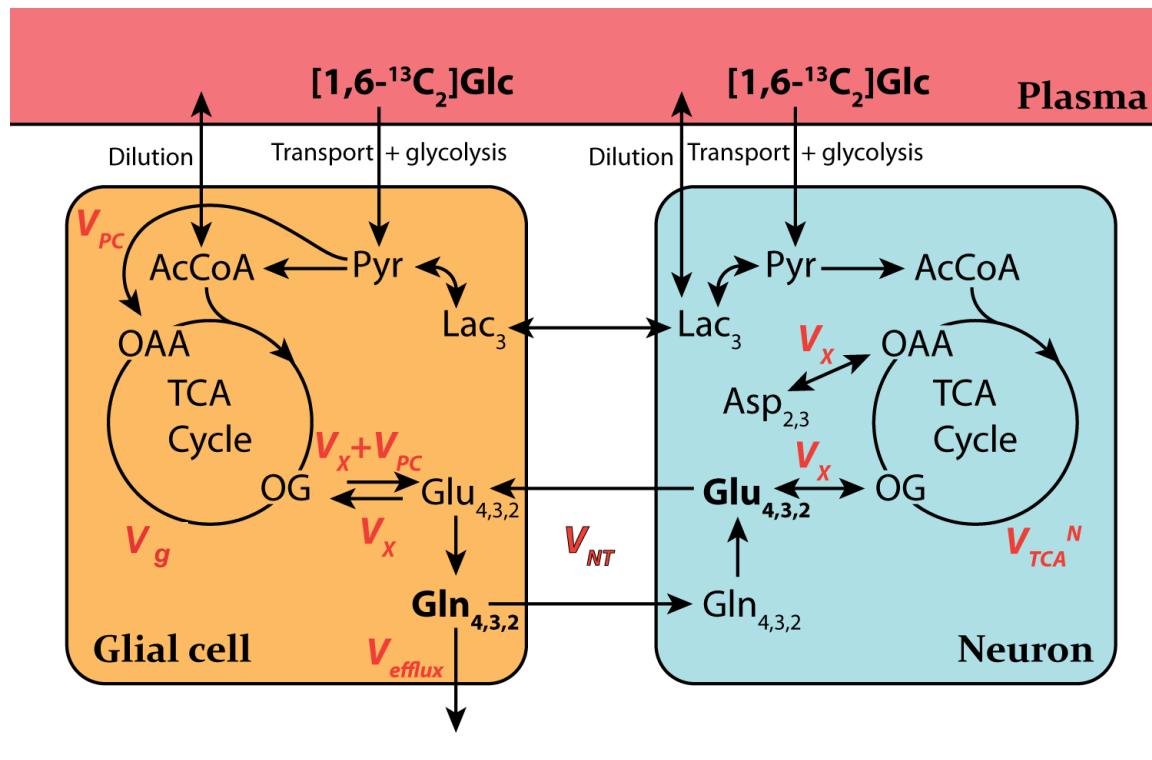
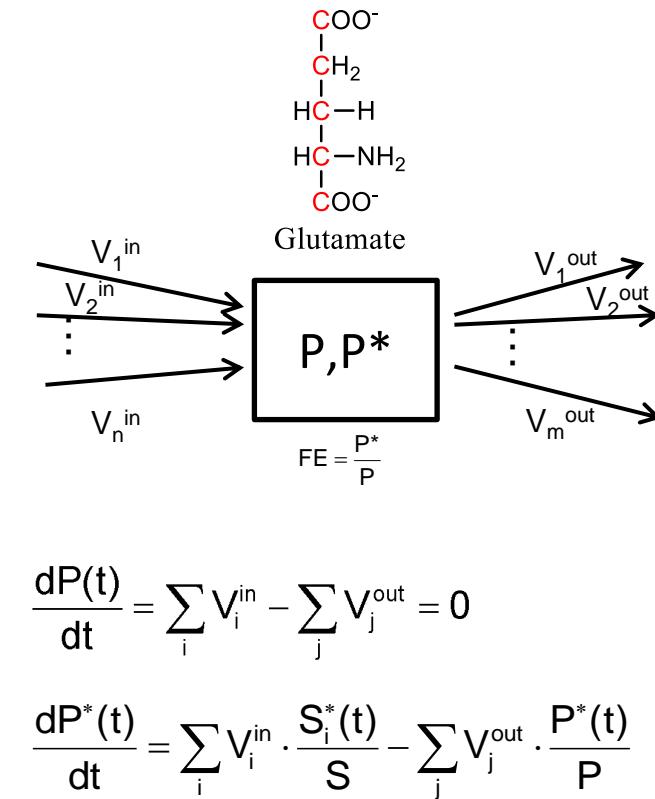
TWO-COMPARTMENT MODELING OF [1,6-13C] GLUCOSE BRAIN METABOLISM

Labelling through PC:

Separate measurement of the C3 and C2 positions of Glu and Gln is required for a complete description of the 2-compartment model.



TWO-COMPARTMENT MODELLING OF BRAIN GLUCOSE METABOLISM



In ^{13}C MRS, the metabolites with sufficient concentration are measured ($> 1\text{mM}$)
 → **Glu, Gln, Asp and Lac**

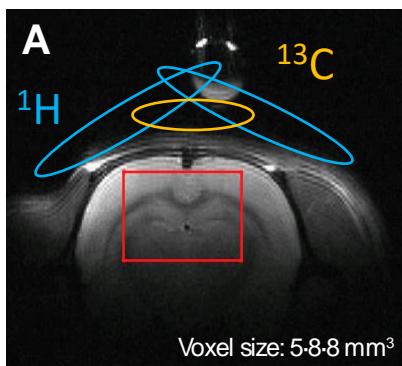
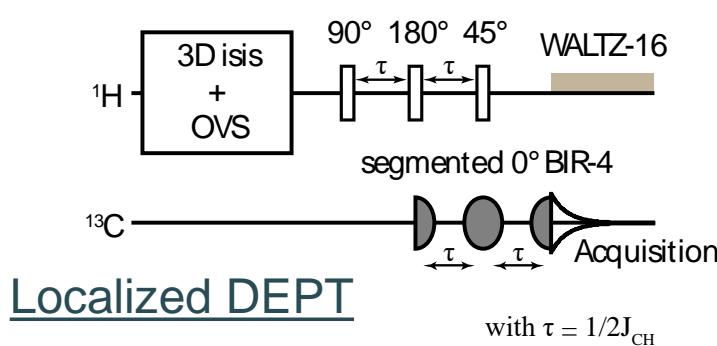
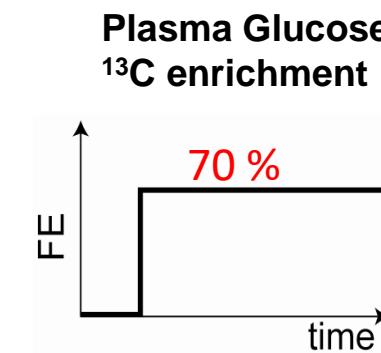
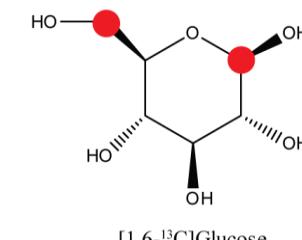
Each labelling position is described by a mass balance equation and a labelling equation

[1,6-¹³C₂] GLUCOSE DYNAMIC MRS STUDIES

METHODS

Experimental protocol:

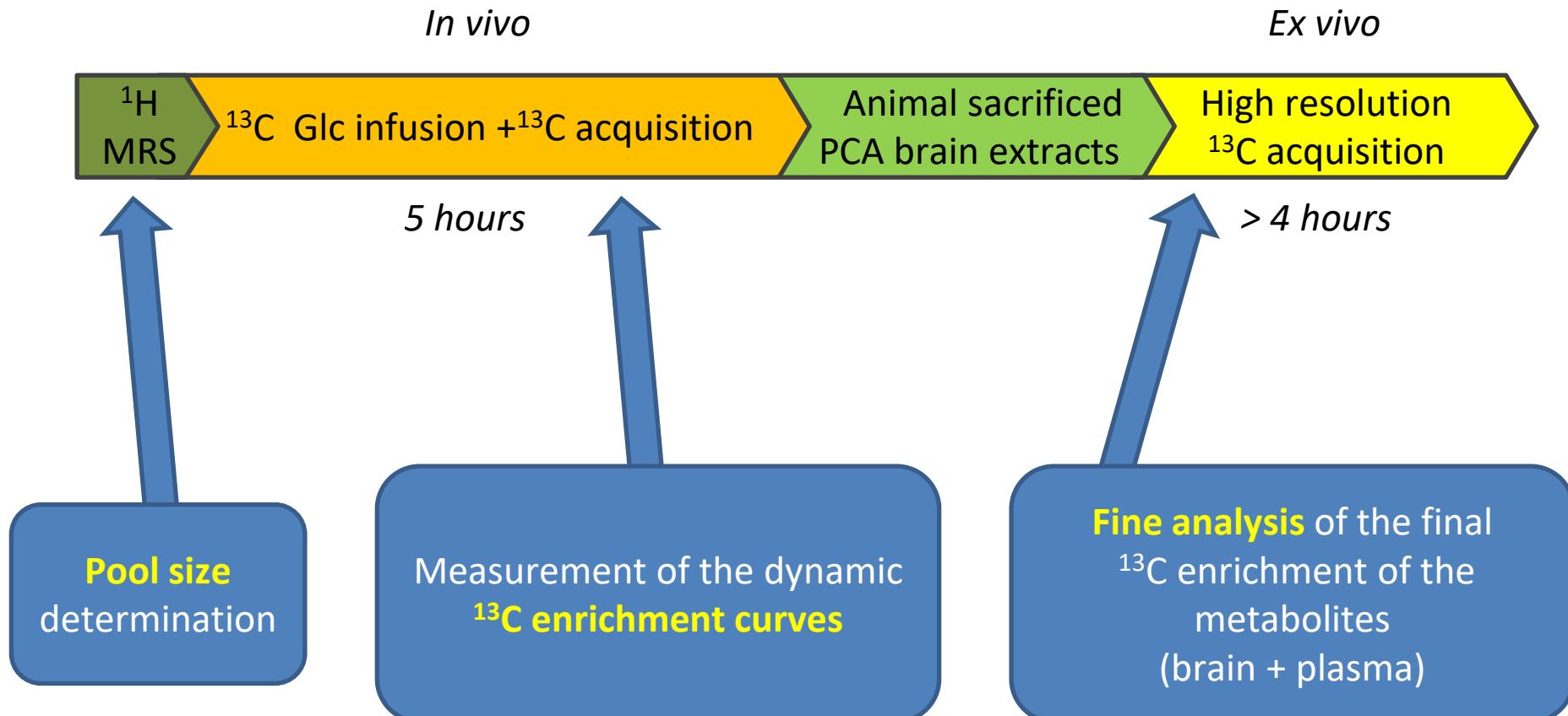
- Fasted Sprague-Dawley rats (n=6) anesthetized with alpha-chloralose infusion
- A bolus of 99% enriched [1,6-¹³C₂] glucose is given over a 5 min period (based on the measured basal glycemia) and followed by constant infusion of 70% enriched [1,6-¹³C₂] glucose
- Generates a « step function » shaped glucose fractional enrichment in blood (FE=70%)
- Saturate glucose transport



[1,6-¹³C₂] GLUCOSE DYNAMIC MRS STUDIES

METHODS

Workflow:



[1,6-¹³C₂] GLUCOSE DYNAMIC MRS STUDIES

METHODS

→ separate measurement of the labeling turnover:

In glutamate :

GluC4
GluC3
GluC2

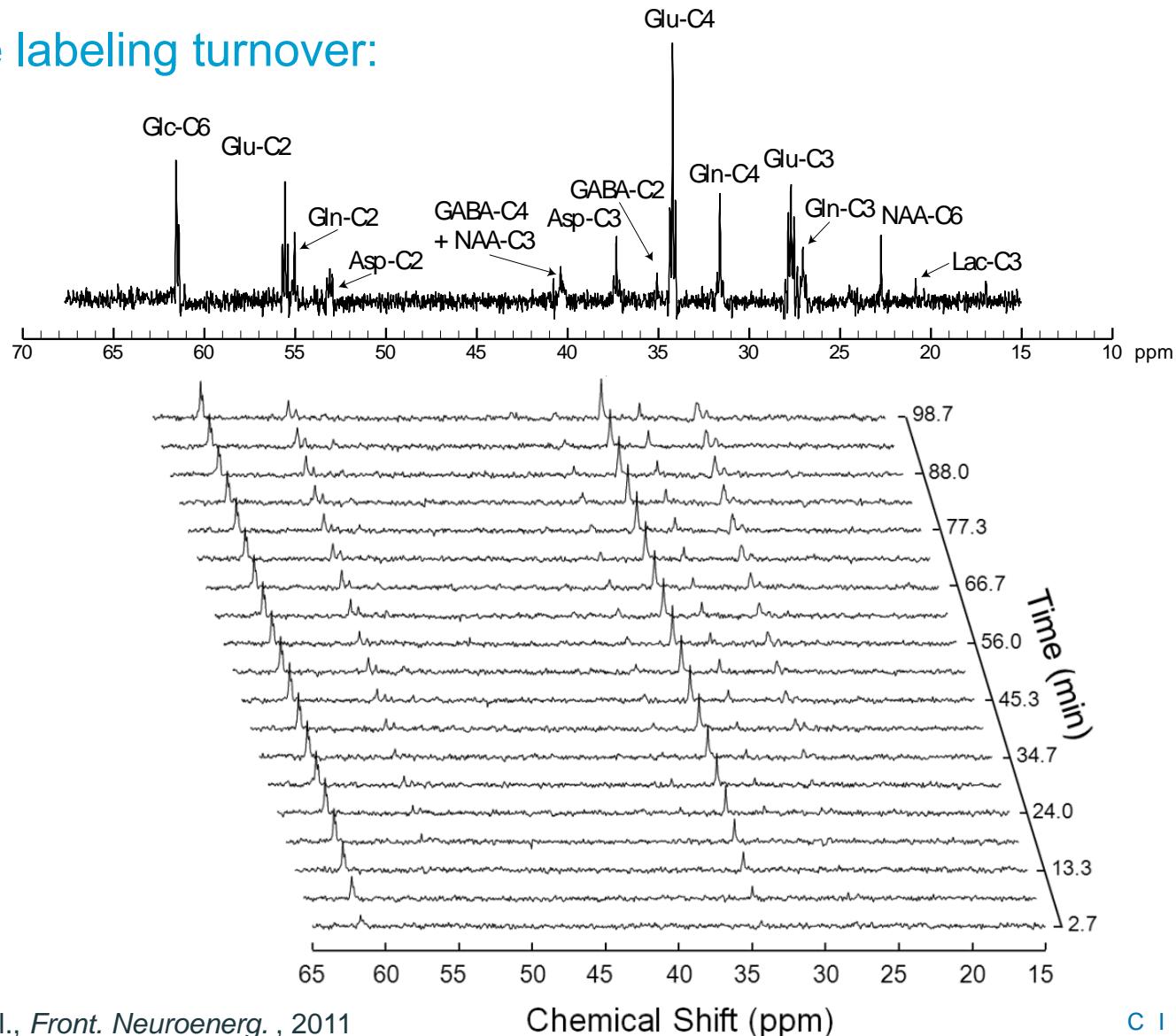
In glutamine :

GlnC4
GlnC3
GlnC2

In aspartate:

AspC3
AspC2

(time resol.= 5.3 min)

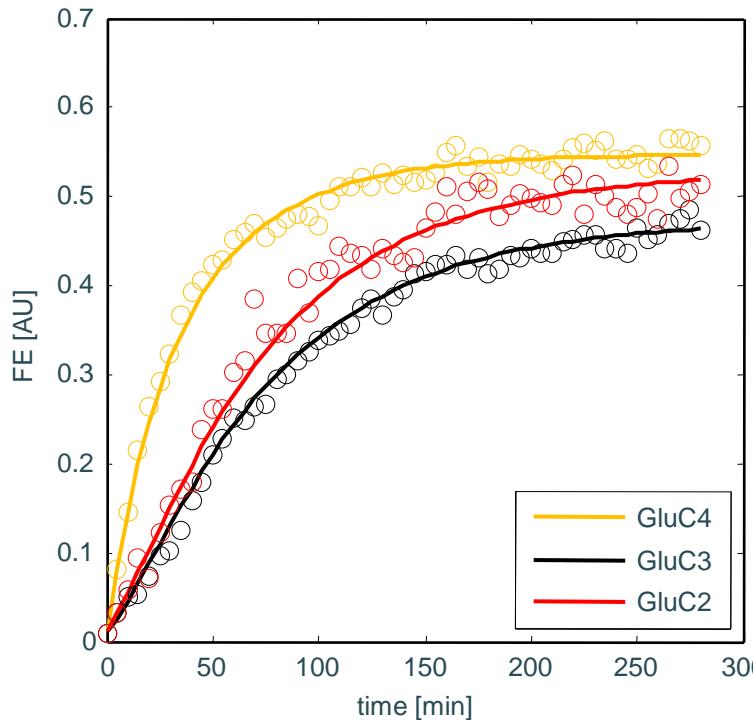
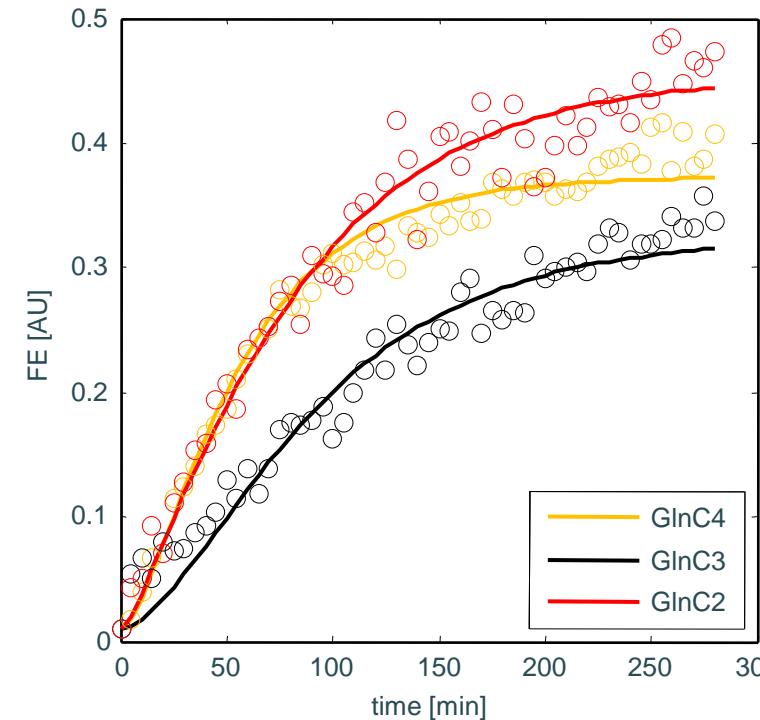


[1,6-¹³C] GLUCOSE DYNAMIC MRS STUDIES AT 14T

METHODS

Results :

Two-compartmental model fitted to the experimental turnover curves.



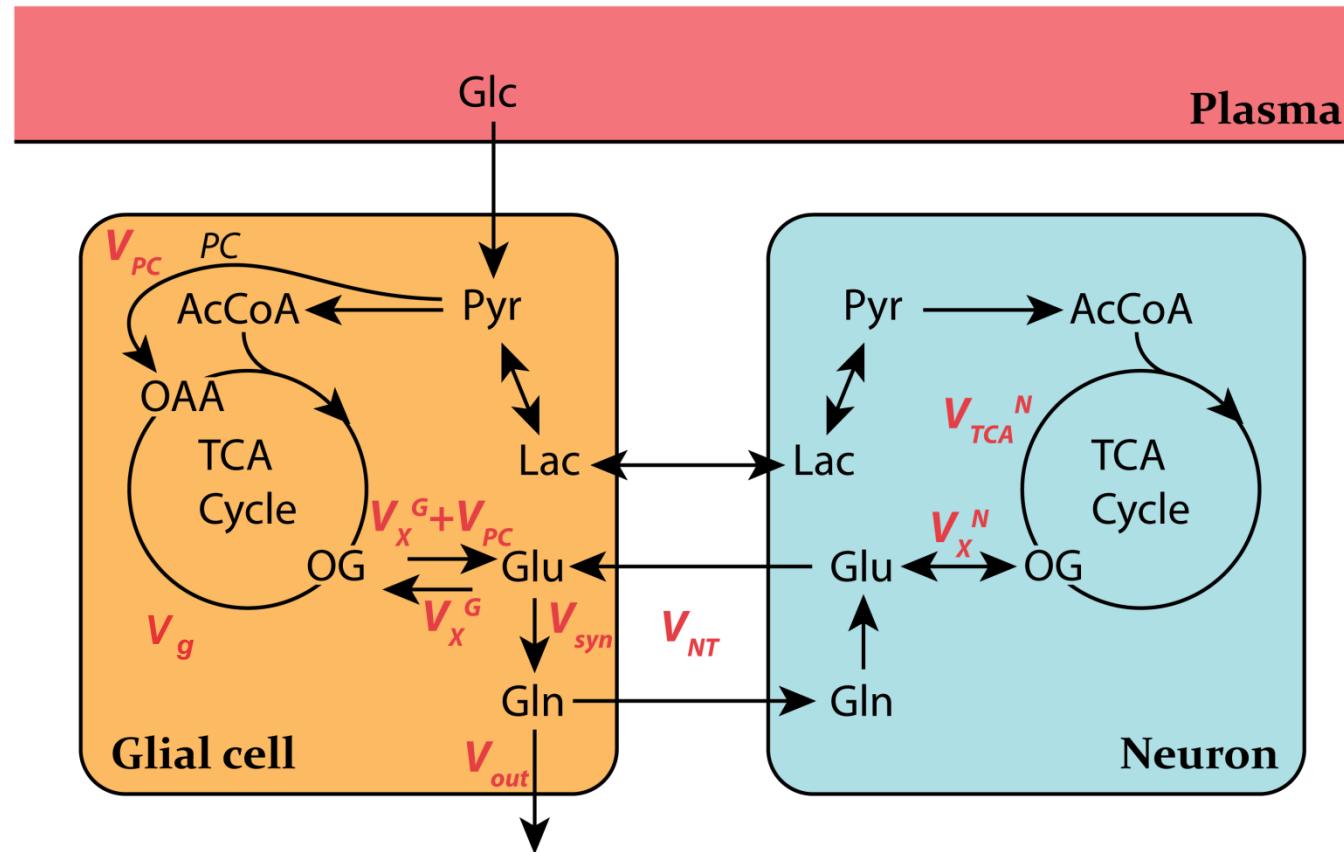
V_g	0.23	+-	0.02
V_x^g	0.17	+-	0.06
V_{nt}	0.12	+-	0.01
V_{tca}^n	0.44	+-	0.01
V_x^n	0.76	+-	0.07
V_{pc}	0.07	+-	0.01

$[\mu\text{mol/g/min}]$

TWO-COMPARTMENT MODELLING OF [1,6-¹³C] GLUCOSE DYNAMIC MRS STUDIES AT 14T

Results :

Characterization of brain oxidative metabolism.



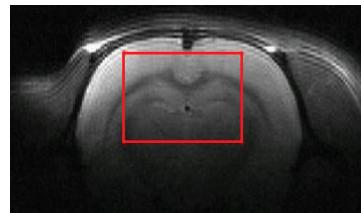
V_g	0.23	+-	0.02
V_x^g	0.17	+-	0.06
V_{nt}	0.12	+-	0.01
V_{tca}^n	0.44	+-	0.01
V_x^n	0.76	+-	0.07
V_{pc}	0.07	+-	0.01

[$\mu\text{mol/g/min}$]

EXTENSION OF IN VIVO ^{13}C STUDIES TO MICE

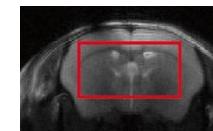
Rat (~270 g)
Blood volume \approx 15 ml

Voxel 320 μL
 $5\times8\times8\text{mm}^3$



Mouse (~30 g)
Blood volume \approx 2.5 ml

Voxel 112 μL
 $3.6\times6.9\times4.5\text{mm}^3$



Additional difficulties in mice studies:

- smaller brain
 - smaller VOI and \rightarrow low SNR
 - Tissue inhomogeneities \rightarrow difficult B_0 shimming
- small blood volume
 - Blood sampling in the magnet almost impossible \rightarrow standardization of the input function or image-derived input function

CURRENT PROJECTS:

EXTENSION OF IN VIVO ^{13}C STUDIES TO MICE

Methods:

Animals and physiology:

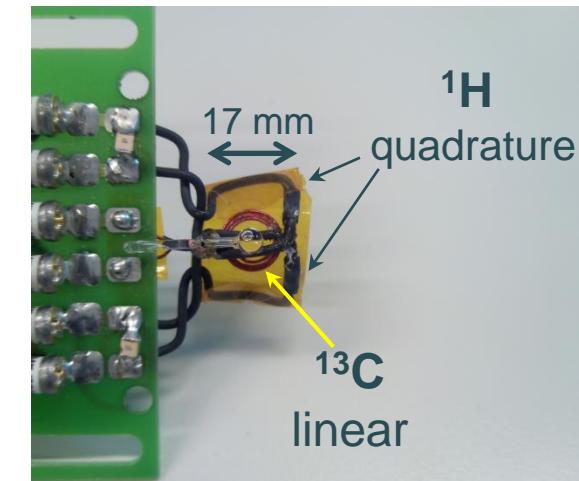
- Nude male mice (8 weeks old, 20-30g, n=3)
- 7 hours fasted
- Isoflurane anaesthesia (1-2%)

Infusion protocol (target FE = 70%, metabolic steady-state):

- Tail vein catheter
- 5 min exponential bolus of 99%-enriched $[1,6-^{13}\text{C}_2]\text{Glc}$
- 5 hours adjustable continuous infusion of 70%-enriched $[1,6-^{13}\text{C}_2]\text{Glc}$
(target glycemia = 300mg/dL)

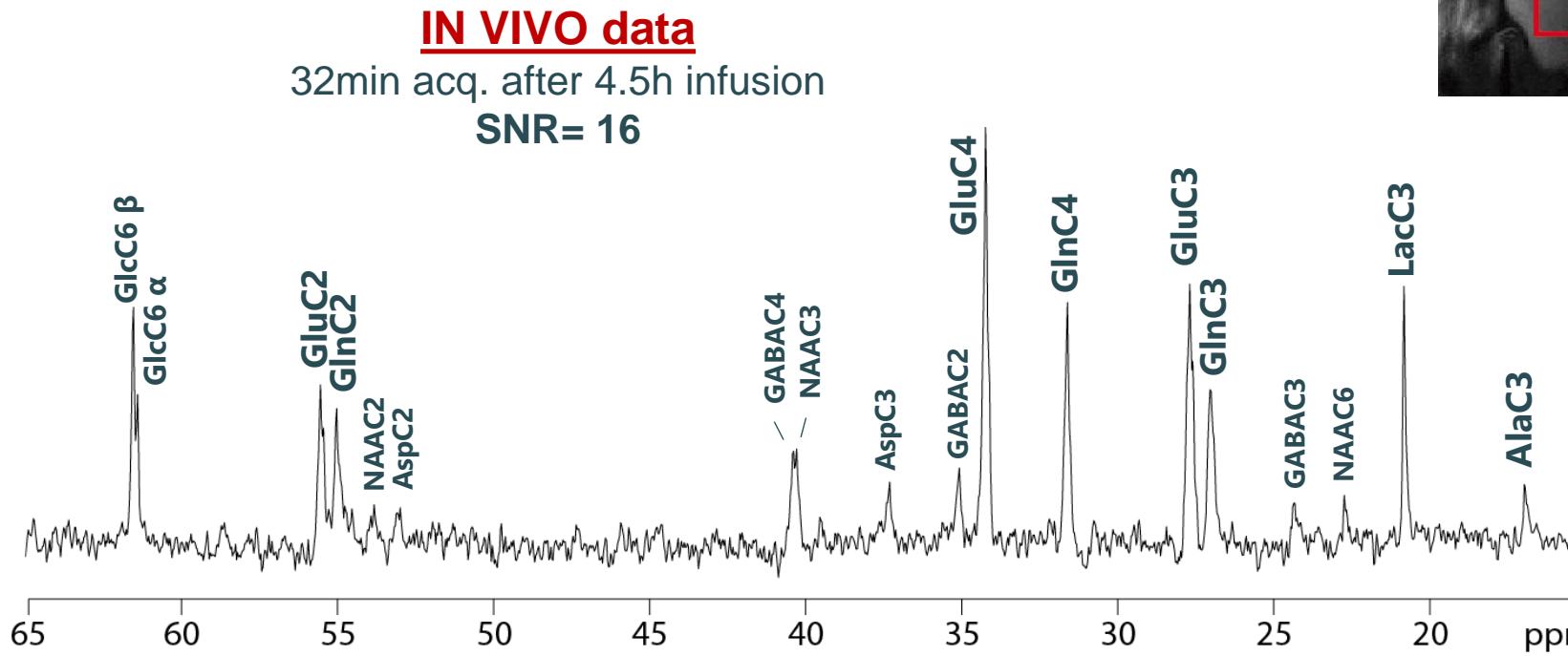
Data acquisition:

- Voxel 112 μL
- 14.1 Tesla system (Varian/Magnex)
- Home-built surface coil
- Semi-adiabatic DEPT sequence



EXTENSION OF IN VIVO ^{13}C STUDIES TO MICE

Results:



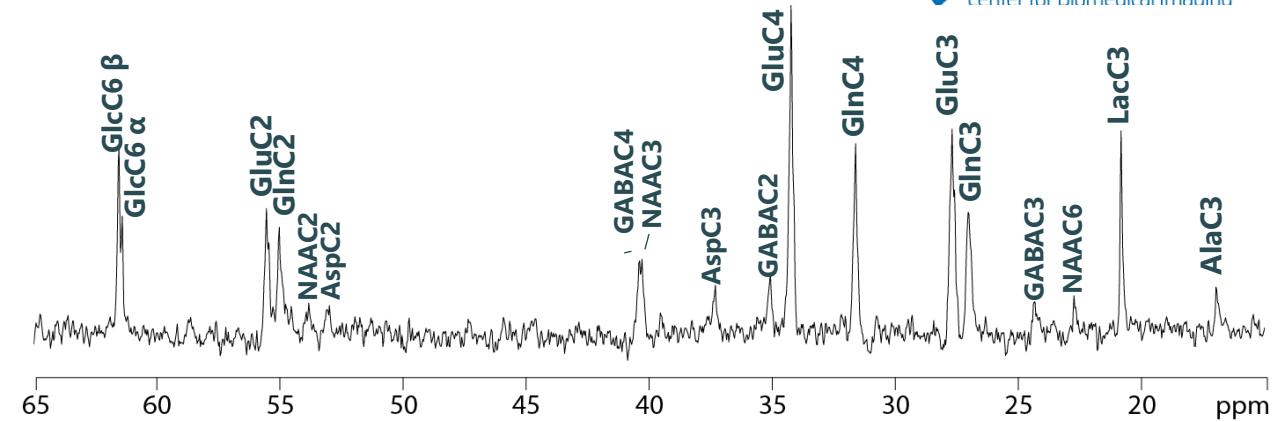
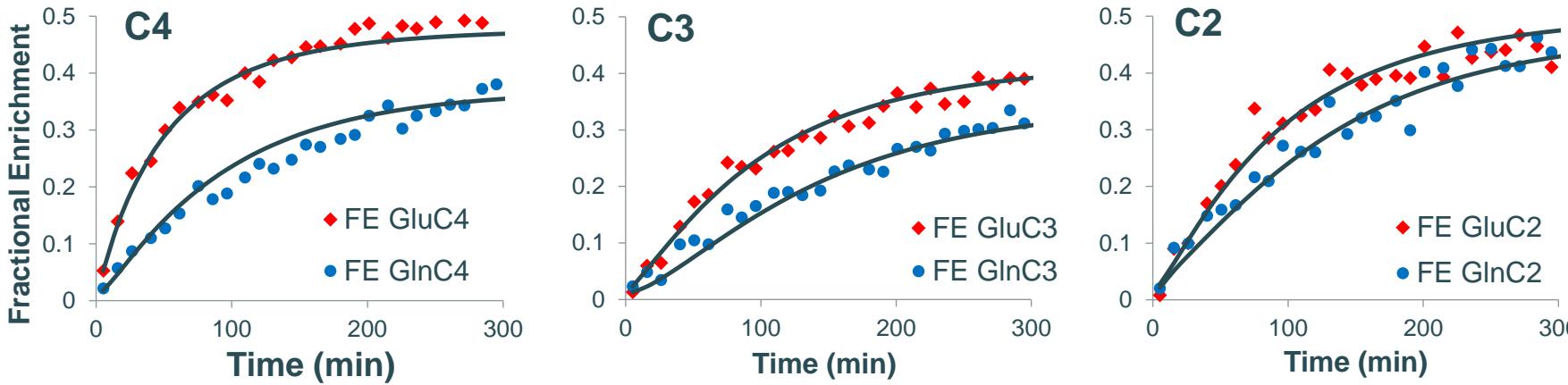
Voxel $112\mu\text{L}$
 $3.6 \times 6.9 \times 4.5\text{mm}^3$

EXTENSION OF IN VIVO ^{13}C STUDIES TO MICE

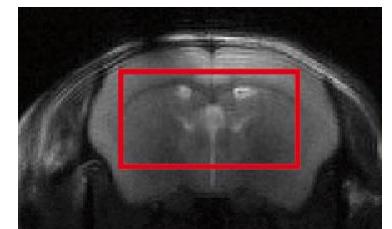
Results:

Glutamate and Glutamine

(temp. resol = 10min):



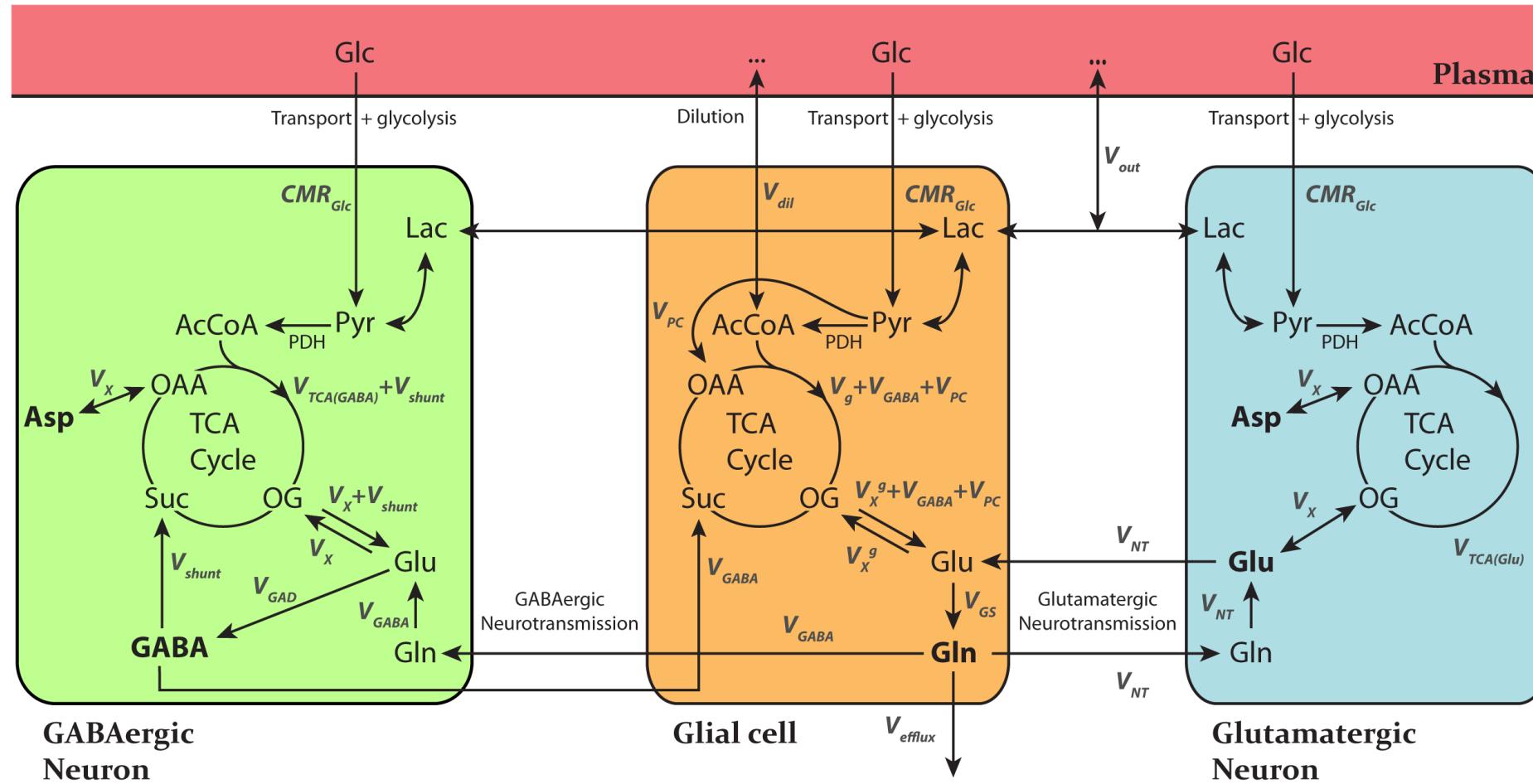
Voxel $112\mu\text{L}$
 $3.6 \times 6.9 \times 4.5\text{mm}^3$



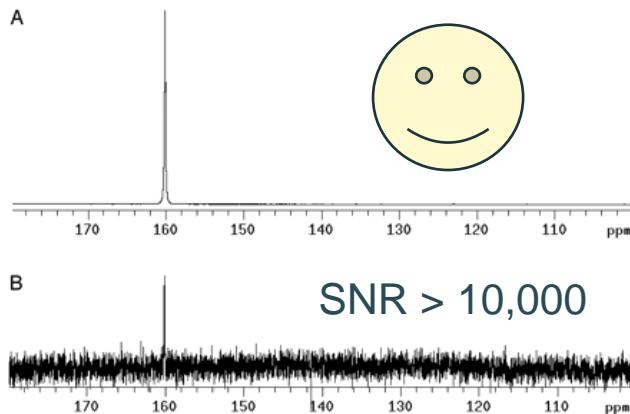
Fluxes	V_g	V_{PC}	V_{NT}	V_{tca}^n	V_x	V_{dil}^g
$[\mu\text{mol/g/min}]$	0.11	0.051	0.21	0.33	0.20	0.82
SD	0.02	0.005	0.03	0.02	0.03	0.04

THREE-COMPARTMENT MODEL

Extension to inhibitory neuronal metabolism

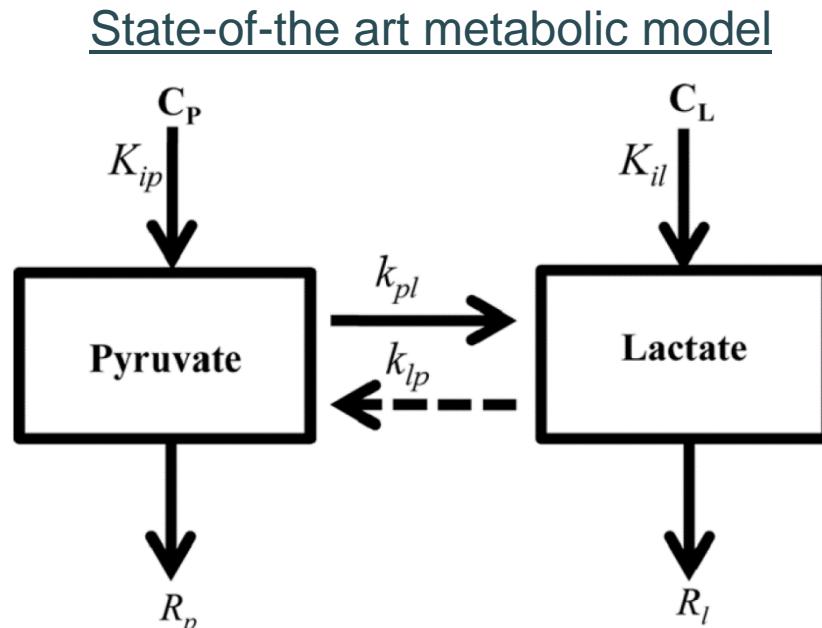


DYNAMIC NUCLEAR POLARISATION EXPERIMENTS



Ardenkjær-Larsen et al. 2003 PNAS

- Short life-time - metabolic pathways ↓
- T_1 relaxation - labelled substrates ↓



Adjusted parameters

TARGET

- Metabolic isotope exchanges
(Biochemical parameters)
- Magnetization decay through successive pulsing.
(Technical parameter)
- T_1 relaxation
(Physical parameter)

DYNAMIC NUCLEAR POLARISATION EXPERIMENTS

$$\frac{d\mathbf{PP}}{dt} = -(R_p + k_{pl})\mathbf{PP}(t) + k_{lp}\mathbf{LP}(t) + K_{ip}\mathbf{C_P}(t) \quad [2]$$

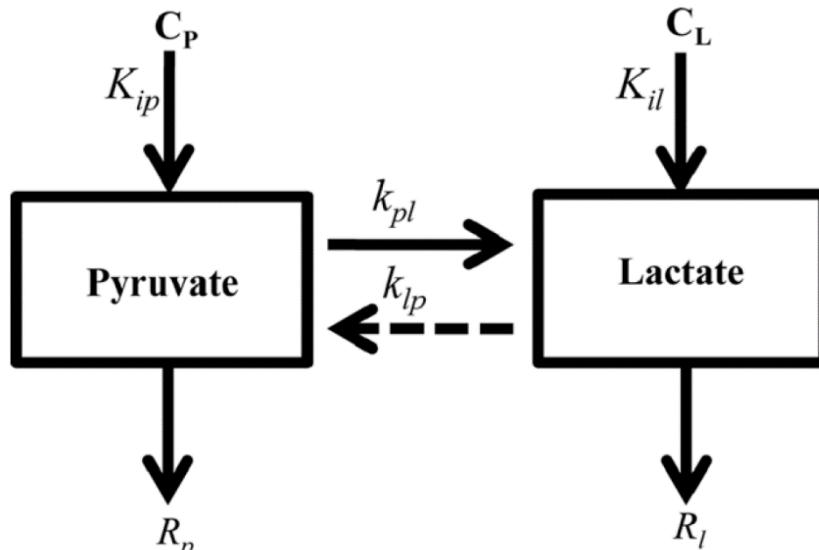
$$\frac{d\mathbf{LP}}{dt} = k_{pl}\mathbf{PP}(t) - (R_l + k_{lp})\mathbf{LP}(t) \quad [3]$$

$$\frac{d\mathbf{PL}}{dt} = -(R_p + k_{pl})\mathbf{PL}(t) + k_{lp}\mathbf{LL}(t) \quad [4]$$

$$\frac{d\mathbf{LL}}{dt} = k_{pl}\mathbf{PL}(t) - (R_l + k_{lp})\mathbf{LL}(t) + K_{il}\mathbf{C_L}(t) \quad [5]$$

$$R_{p/l} = \frac{1}{T_{1py/la}} + \frac{[1 - \cos(\theta)]}{TR} + k_{po/lo}$$

State-of-the art metabolic model

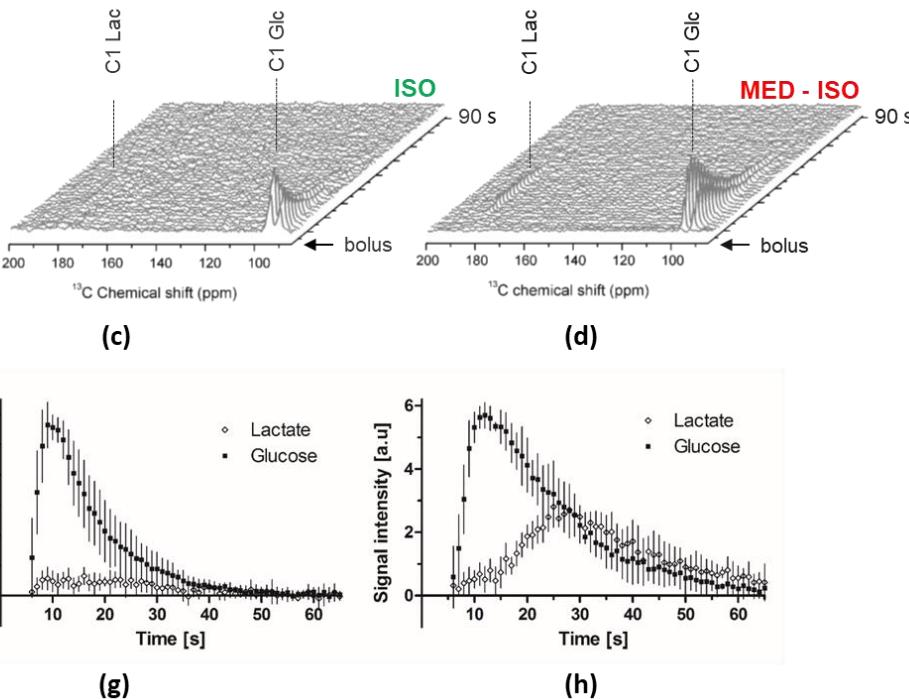


Adjusted parameters

TARGET

- Metabolic isotope exchanges
(Biochemical parameters)
- Magnetization decay through successive pulsing.
(Technical parameter)
- T_1 relaxation
(Physical parameter)

TOWARDS QUANTITATIVE METABOLIC MODELLING IN HYPERPOLARIZED ^{13}C -GLUCOSE EXPERIMENTS



Article

Measuring Glycolytic Activity with Hyperpolarized $[^{2}\text{H}_7, \text{U}-^{13}\text{C}_6]$ D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions

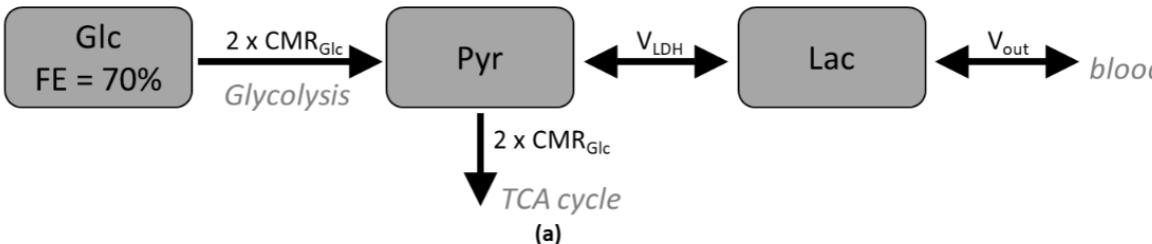
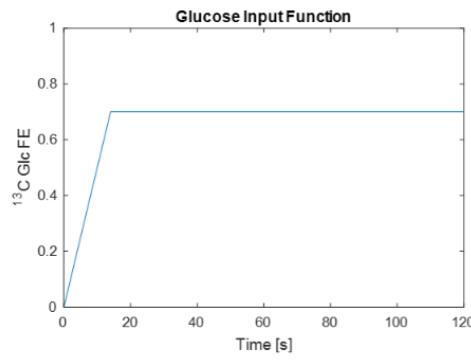
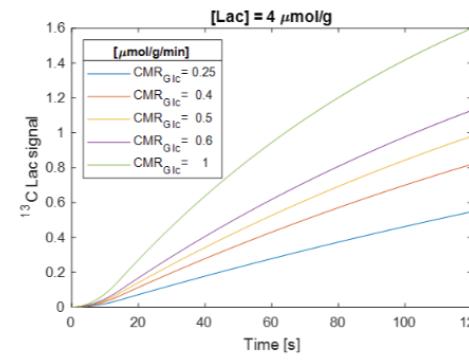
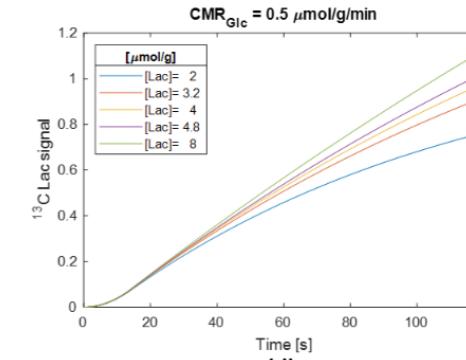
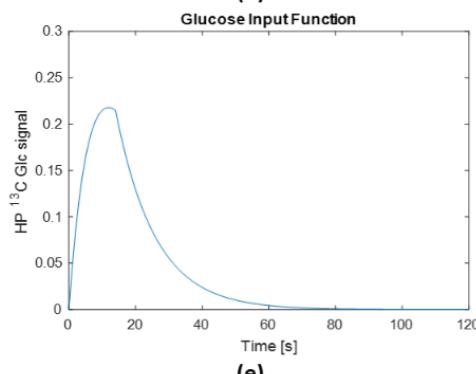
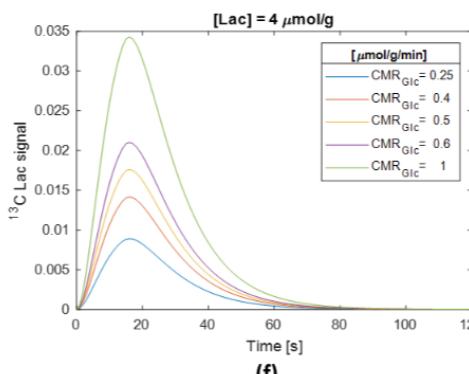
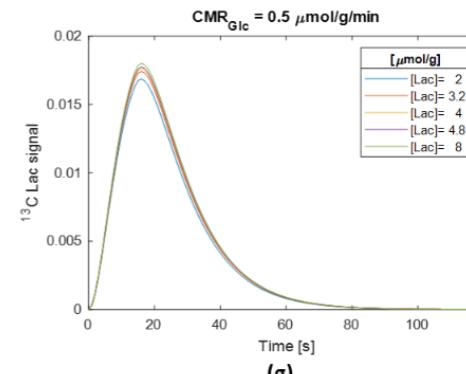
Emmanuelle Flatt ^{1,†}, Bernard Lanz ^{1,†}, Yves Pilloud ², Andrea Capozzi ¹ , Mathilde Hauge Lerche ³, Rolf Gruetter ¹ and Mor Mishkovsky ^{1,*}

Dynamic parameters

- Metabolic isotope exchanges
(Biochemical parameters)
- Magnetization decay through successive pulsing.
(Technical parameter)
- T_1 relaxation
(Physical parameter)

TOWARDS QUANTITATIVE METABOLIC MODELLING IN HYPERPOLARIZED ^{13}C -GLUCOSE EXPERIMENTS

Sensitivity study (effect prediction)



Nominal values:

$[\text{Lac}] = 4 \mu\text{mol/g}$

$\text{CMR}_{\text{Glc}} = 0.25 \mu\text{mol/g/min}$

$\text{TR} = 1\text{s}$

$\text{Lac R1} = 1/18 \text{ s}^{-1}$ F.A. = $\pi/7$

$\text{Pyr R1} = 1/18 \text{ s}^{-1}$ F.A. = $\pi/7$

$\text{Glc R1} = 1/14 \text{ s}^{-1}$ F.A. = $\pi/120$
(and apparent $\text{TR} = 8\text{s}$)

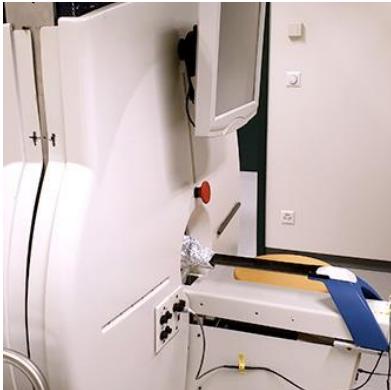
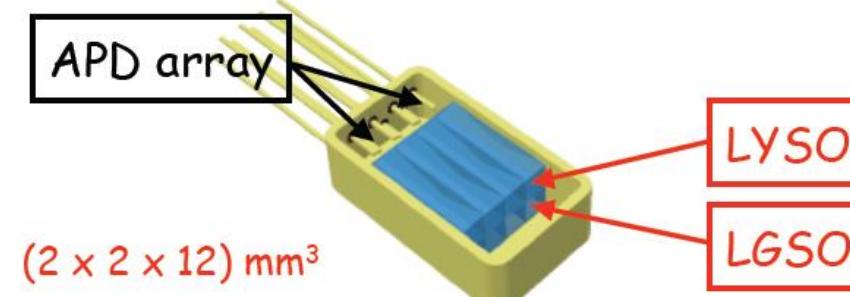
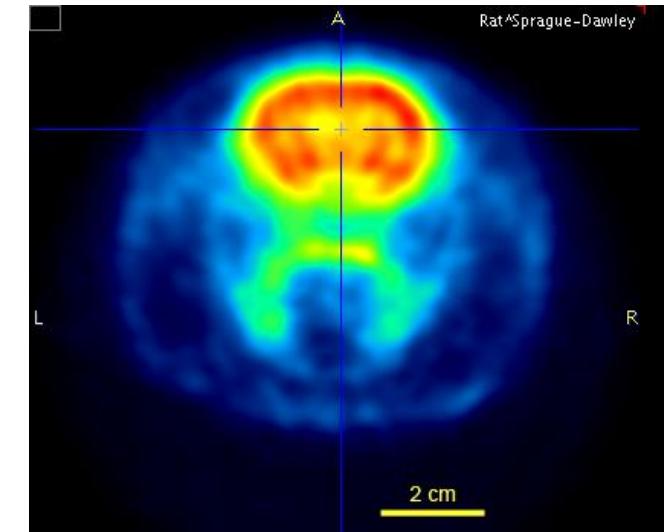
Conclusion:

HP $[^2\text{H}_7, \text{U}-^{13}\text{C}_6]$ Glc reports on **de novo Lac synthesis** and is sensitive to CMR_{Glc} .

QUANTITATIVE CMR_{GLC} MAPPING WITH PRECLINICAL PET

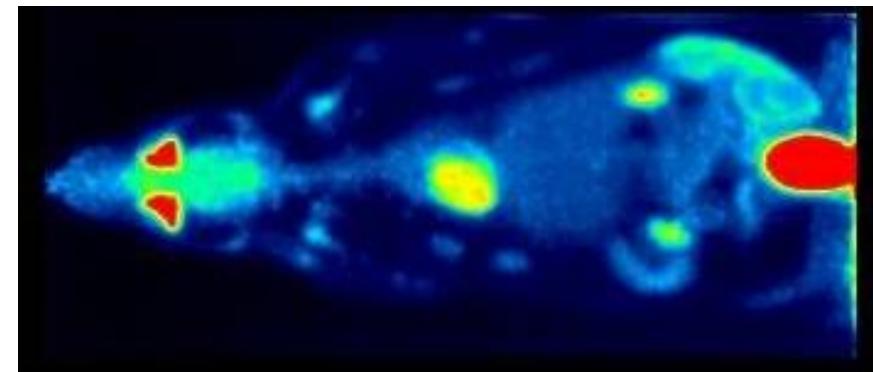
CIBM small animal PET scanner

Gamma Medica-Ideas, Inc.

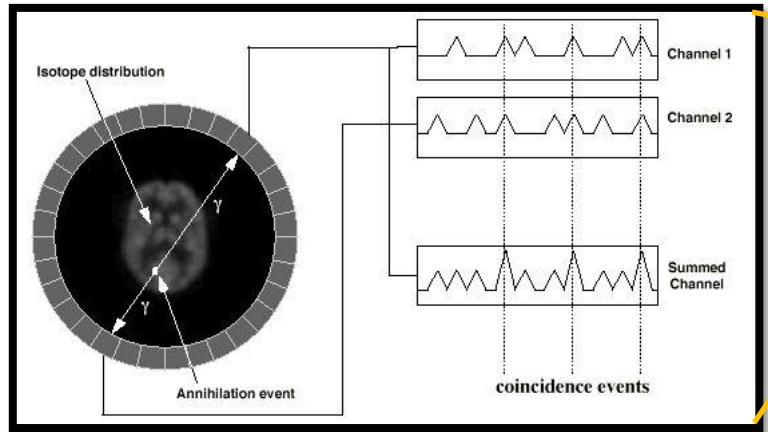


LabPET4 :

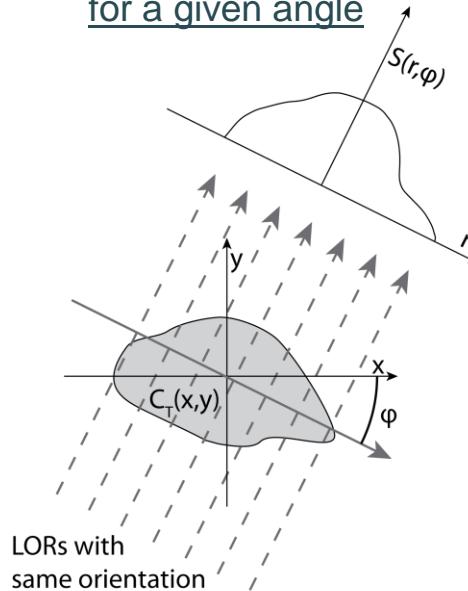
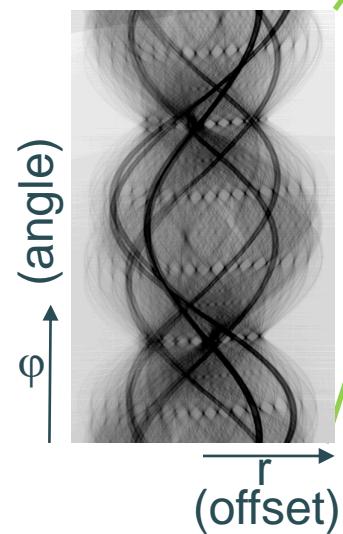
ring diameter :	15.6 cm
Aperture / Transverse field of view:	11 cm
Axial field of view:	3.7 cm
Number of APD Detectors:	1536



QUANTIFICATION OF THE PET RESULTS



Lines of response
for a given angle



Coincidence list
-> Remove false coincidences

Histogramming (Time frames)

-> Correct for tissue absorption

Sinogram

Reconstruction

**Image in
counts/s/voxel**

Quantitative calibration

(based on phantom measurements)

Image in Bq/ml

Intensity of the image depends on:

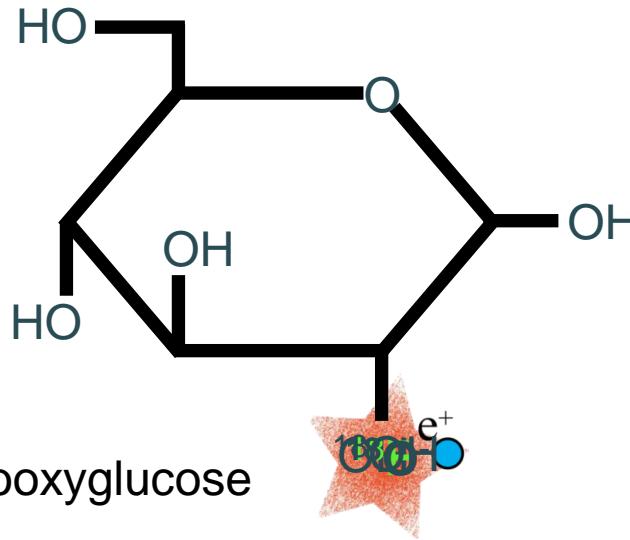
- the real uptake of tracer
- the injected dose and the weight (or volume) of the subject.

Standardized uptake value (semi-quantitative static parameter):
$$\text{SUV (VOI)} = \frac{\text{activity density [Bq/ml]} * \text{subject weight [g]}}{\text{injected activity [Bq]}}$$

GLUCOSE CONSUMPTION

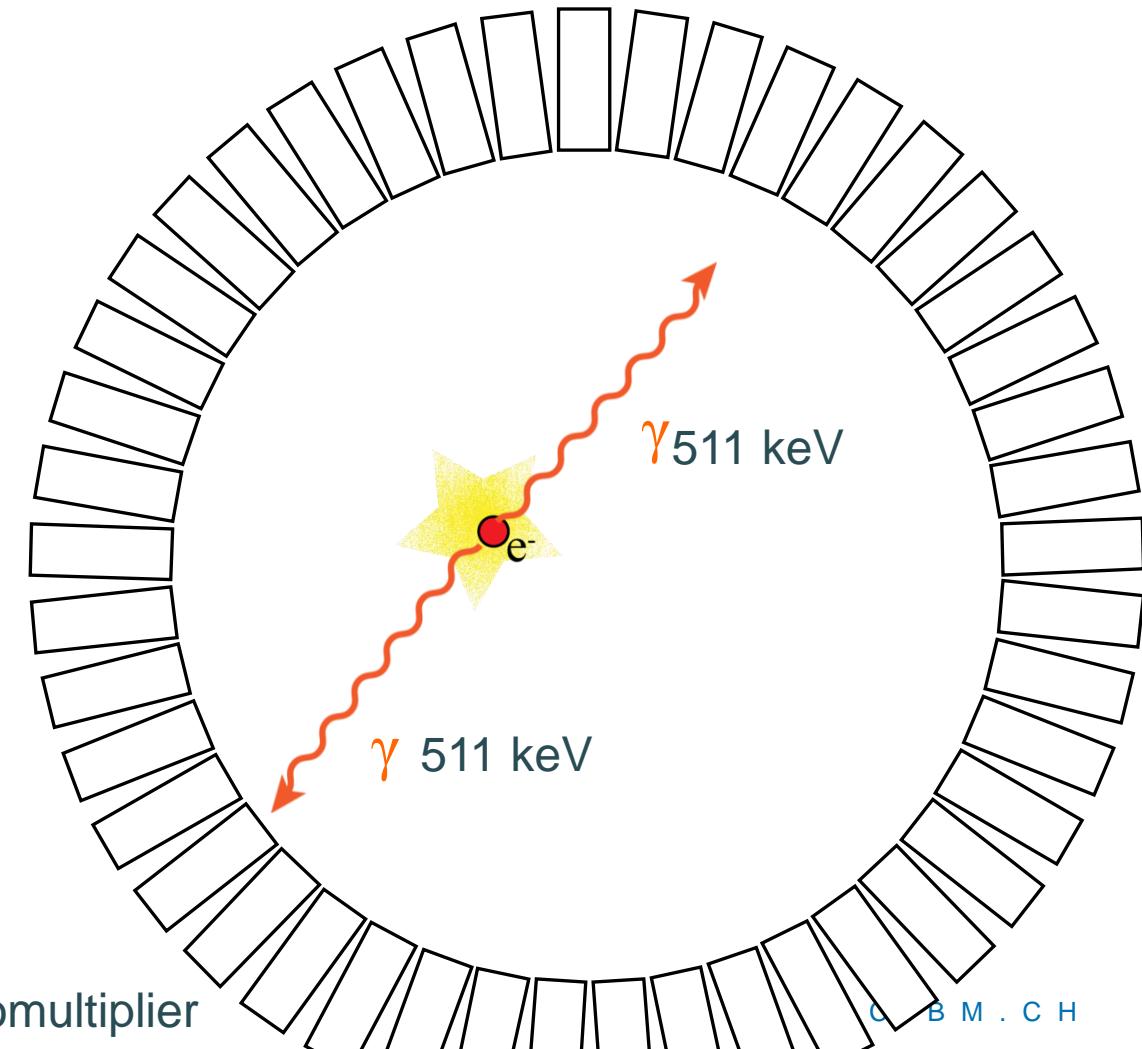
MEASURED WITH FDG-PET

Fluorodeoxyglucose (FDG) -> glucose metabolism



FDG half-life : 110 min

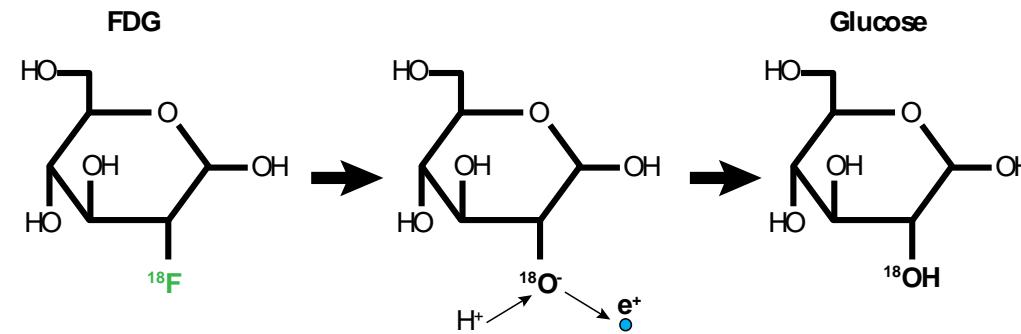
Mean free path the emitted β^+ in water : ~ 1mm



PET detectors:
Scintillator + photomultiplier

PARTICULARITY OF FDG

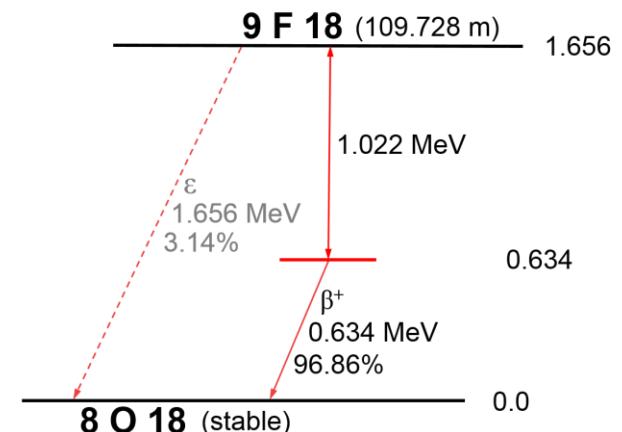
In the particular case of FDG, there is actually no «cold» tracer present in the system.



→ direct conversion of activity (in kBq/ml) to concentration is possible.

$$A(t) = A_0 \exp\left(\frac{-\ln(2) t}{T_{1/2}}\right)$$

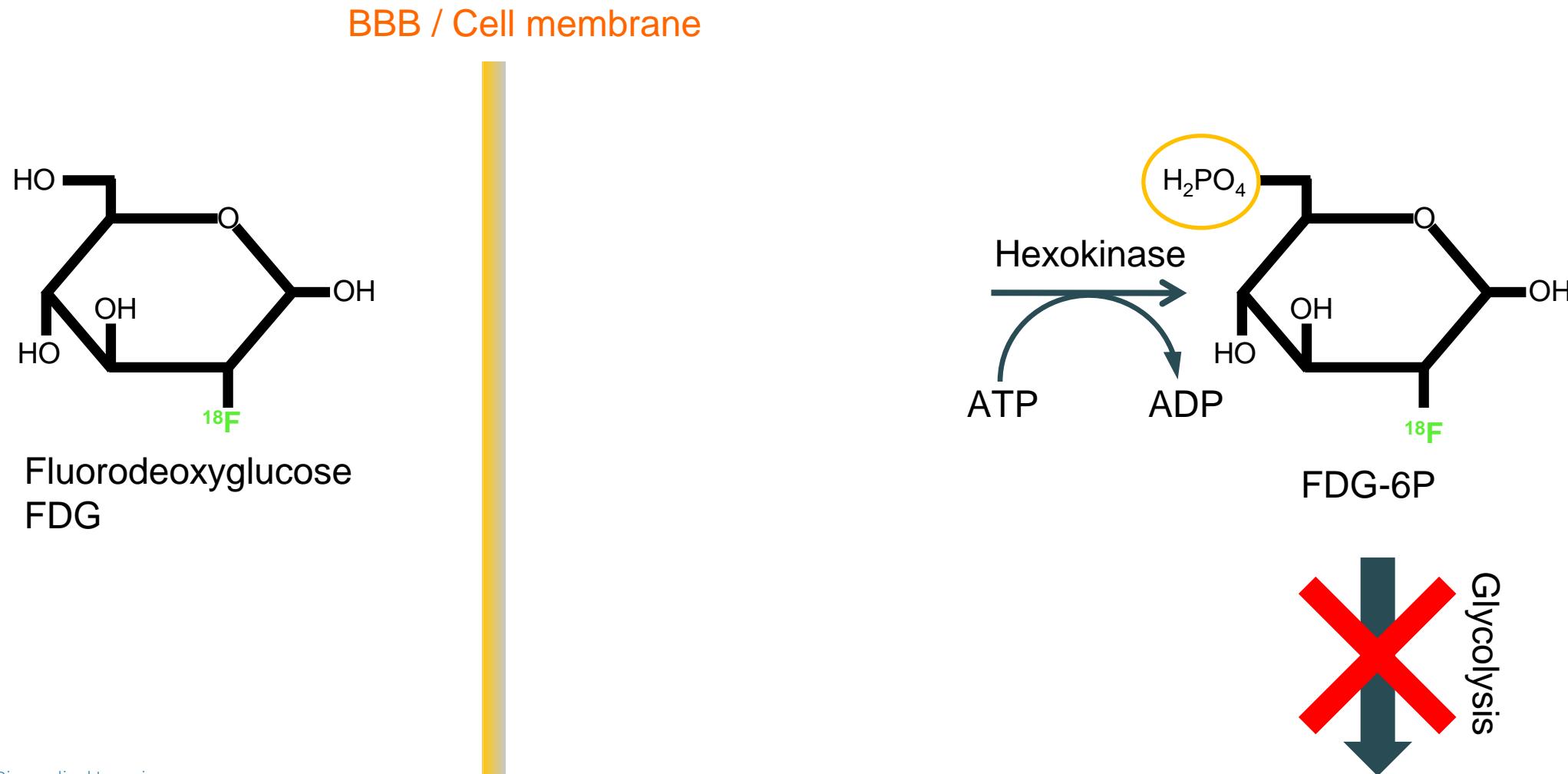
$$C(t) = \frac{100}{96.86} \int_t^{\infty} A(t') dt' = \frac{100}{96.86} A(t) \left(\frac{T_{1/2}}{\ln(2)} \right)$$



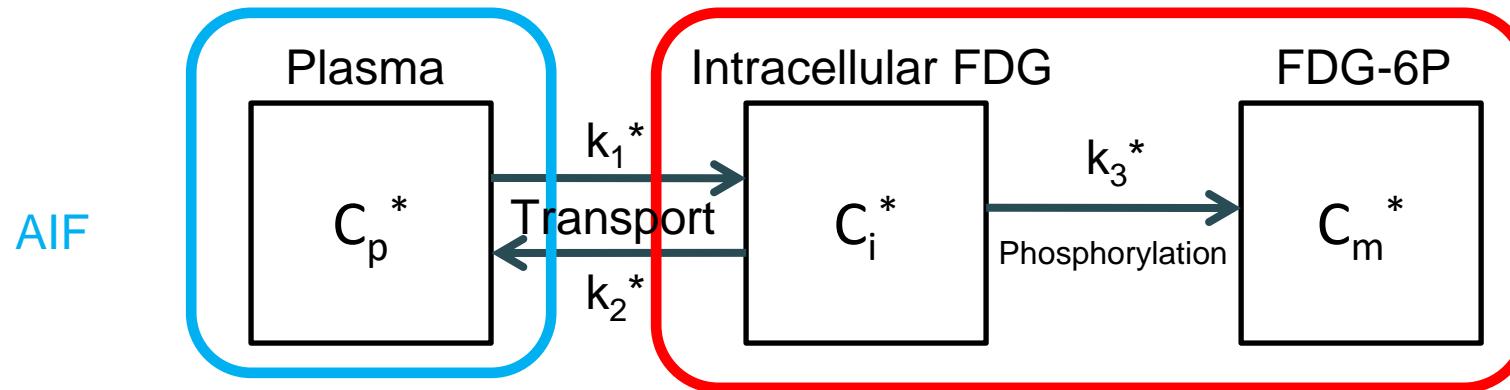
With $A \cong 500 \text{ kBq/ml}$

→ $C \cong 5 \cdot 10^9 \text{ molecules/ml} \cong 8 \text{ pmol/l}$

METABOLISM OF FDG



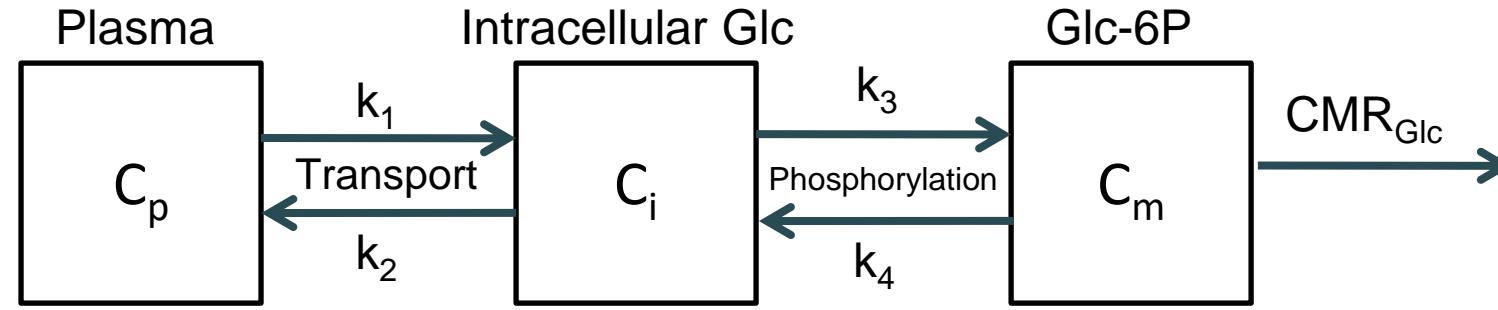
MODELLING OF GLUCOSE AND FDG METABOLISM:



PET
measured
quantity

$$C_i^*(t) = \frac{k_1^*}{k_2^* + k_3^*} ((k_2^* + k_3^*) e^{-(k_2^* + k_3^*)t}) \otimes C_p^*(t) \quad | = 0$$
$$C_m^*(t) = \frac{k_1^* k_3^*}{k_2^* + k_3^*} (1 - e^{-(k_2^* + k_3^*)t}) \otimes C_p^*(t)$$

MODELLING OF GLUCOSE AND FDG METABOLISM:



Mass balance equations at metabolic steady-state:

$$\frac{dC_i(t)}{dt} = k_1 C_p + k_4 C_m - (k_2 + k_3) C_i = 0$$

$$\frac{dC_m(t)}{dt} = k_3 C_i - (k_4 C_m + CMR_{Glc}) = 0$$

$$CMR_{Glc} = k_3 C_i - k_4 C_m = C_p \frac{k_3 k_1}{k_2 + k_3}$$

$$MR_{Glc} = \frac{C_p}{LC} \frac{k_1^* k_3^*}{k_2^* + k_3^*}$$

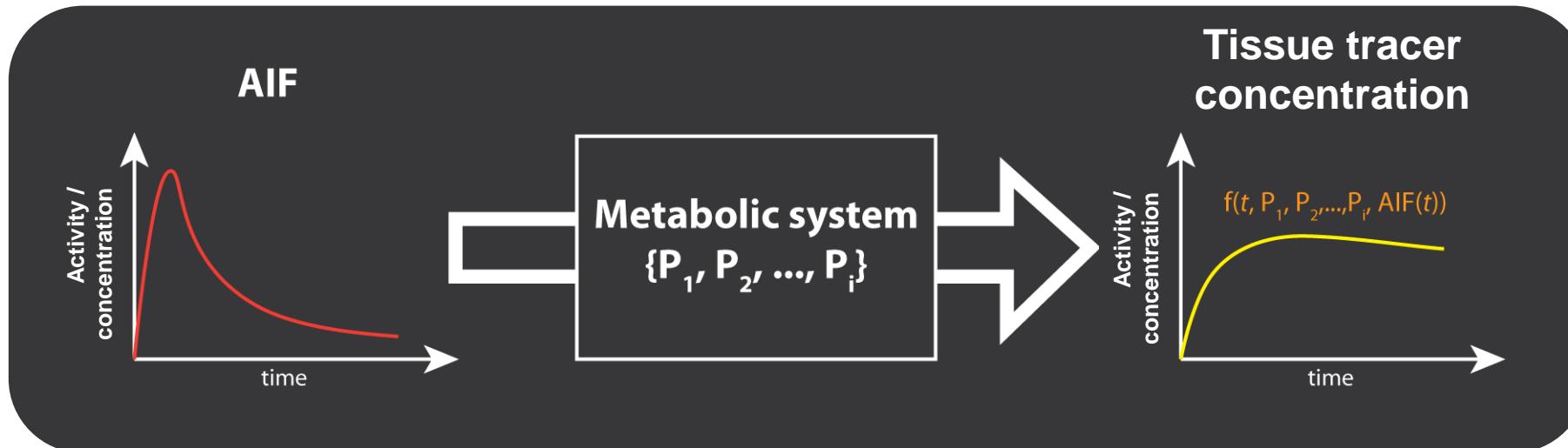
with

$$LC = \frac{\left[\frac{k_1^* k_3^*}{k_2^* + k_3^*} \right]}{\left[\frac{k_1 k_3}{k_2 + k_3} \right]}$$

MATHEMATICAL PRINCIPLES OF COMPARTMENTAL MODELLING

The measurement of the substrate concentration:

The arterial input function (AIF)



The AIF needs to be measured continuously over the entire infusion period or

The infusion protocol is designed to reach a desired input function.

QUANTITATIVE CMR_{GLC} MAPPING WITH PRECLINICAL PET

Non-invasive tracer input function measurement

Research Article | Basic Science Investigations

Image-Derived Input Function from the Vena Cava for ¹⁸F-FDG PET Studies in Rats and Mice

Bernard Lanz¹, Carole Poitry-Yamate², and Rolf Gruetter¹⁻⁴

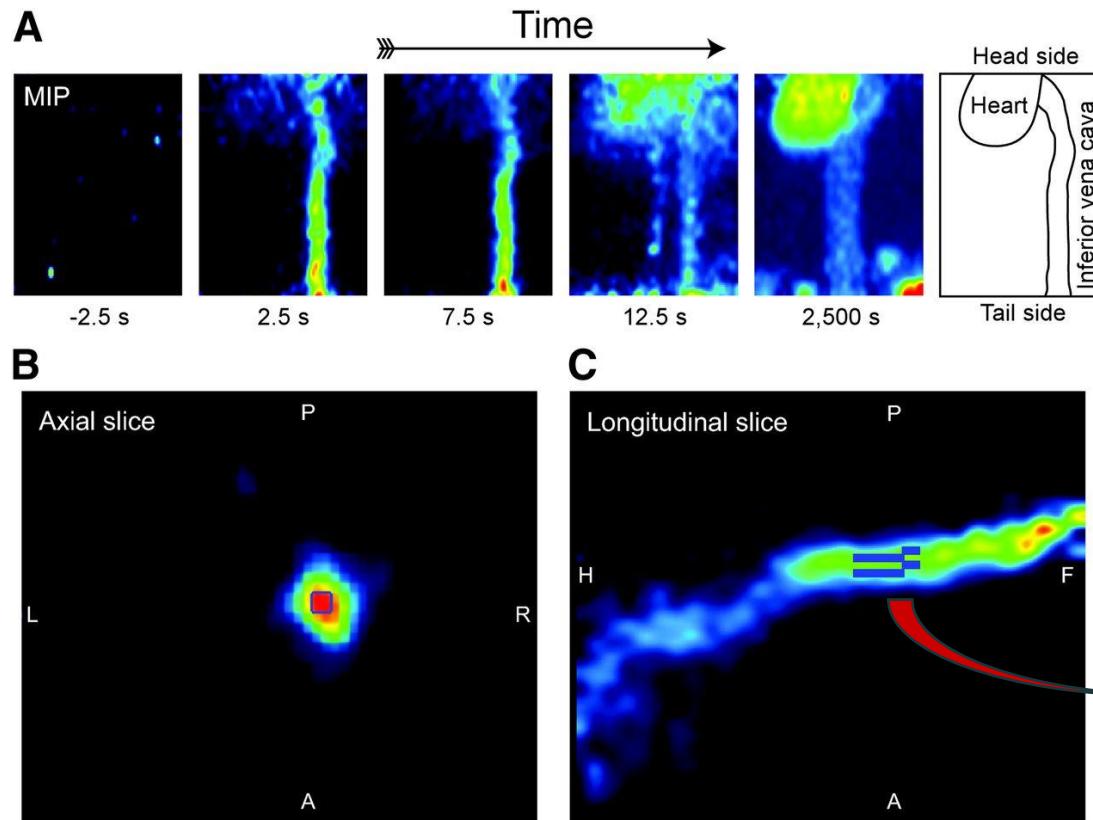
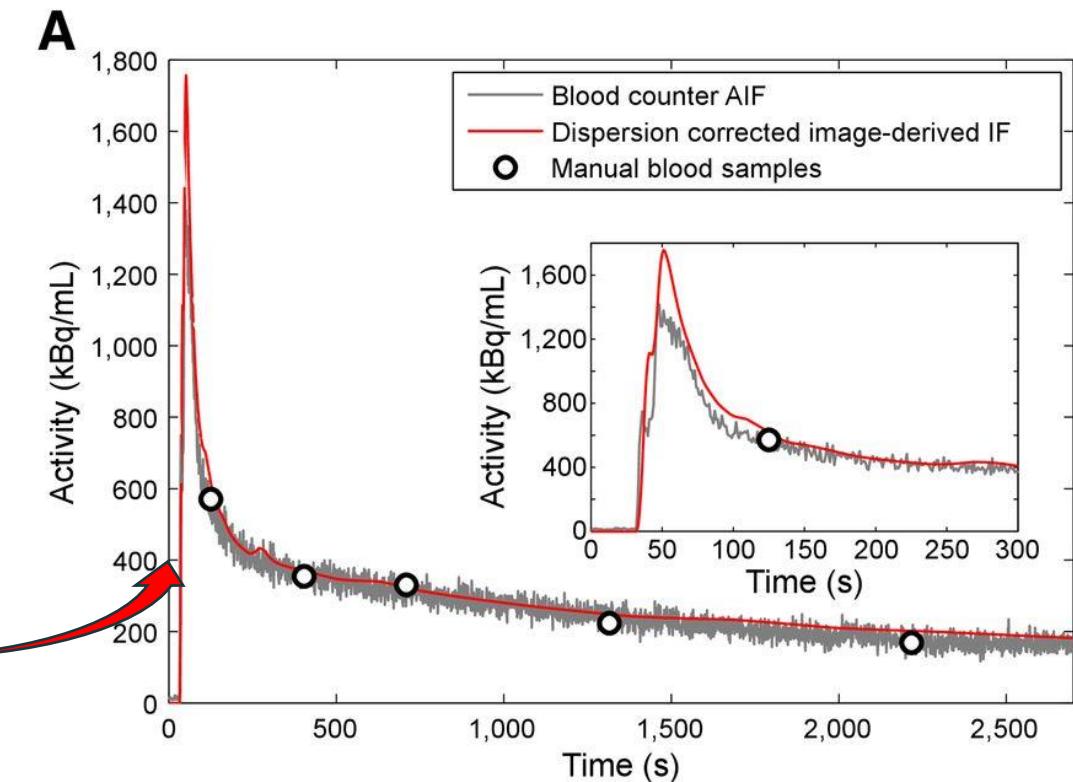
¹Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;

²Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ³Department of Radiology, University of Lausanne, Lausanne, Switzerland; and ⁴Department of Radiology, University of Geneva, Geneva, Switzerland

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 55 • No. 8 • August 2014

QUANTITATIVE CMR_{GLC} MAPPING WITH PRECLINICAL PET

Non-invasive tracer input function measurement

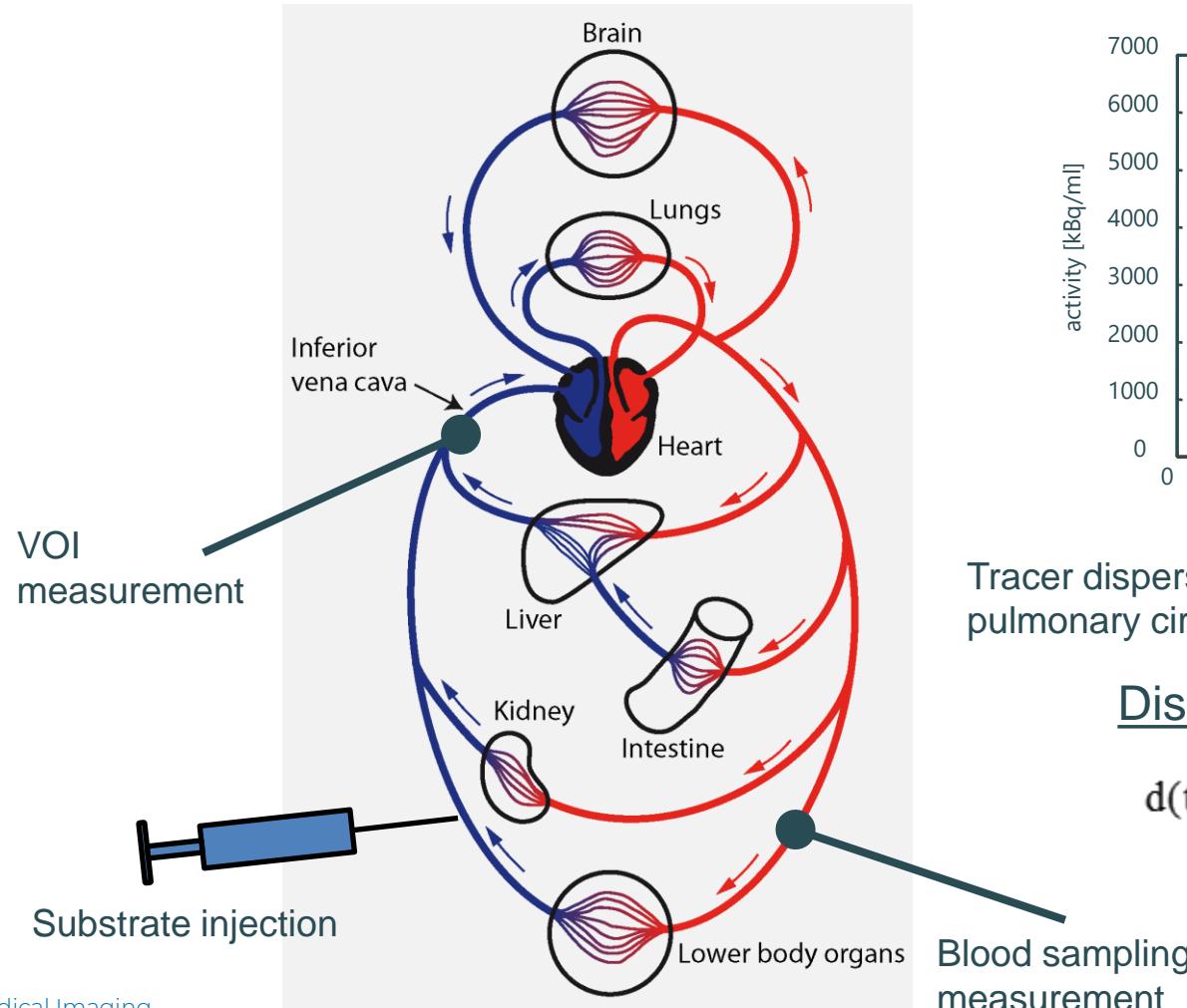
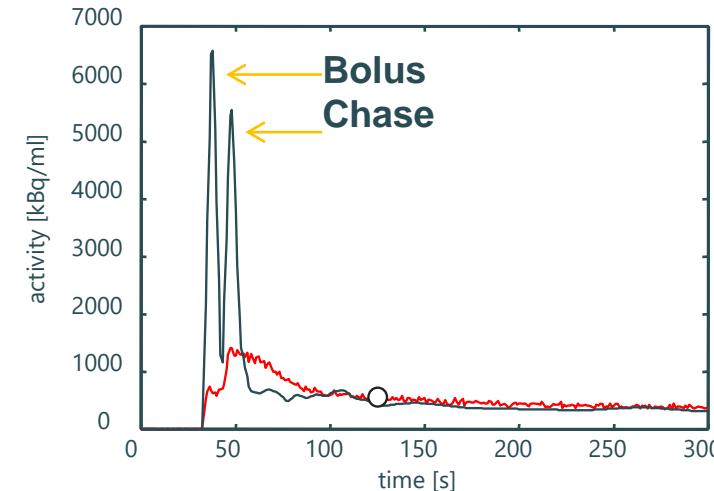


PET images of vena cava in rat during first passage of ¹⁸F-FDG bolus,
used to define VOI for image-derived input function

Lanz et al., J. Nucl. Med., 2014

INPUT FUNCTION DISPERSION / DELAY

Characterization of the tracer dispersion:



Tracer dispersion is likely related to blood mixing in the pulmonary circulation and in interstitial tissue.

Dispersion correction:

$$d(t) = a \left[b \left(\frac{1}{\tau_1} \right) e^{-t/\tau_1} + (1-b) \left(\frac{1}{\tau_2} \right) e^{-t/\tau_2} \right]$$

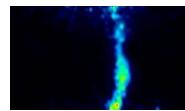
Lanz et al., J Nucl Med. 2014

QUANTITATIVE CMR_{GLC} MAPPING WITH PRECLINICAL PET:: APPLICATIONS [1]

Injection of ¹⁸F-FDG bolus in the tail vein

67.6 ± 11.9 MBq

dynamic acquisition on the vena cava

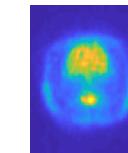


Arterial input function (AIF) [2]

(Correction for blood versus plasma content)

3D maps in Bq/mL
0.5x0.5x1.18 mm³
nominal resolution

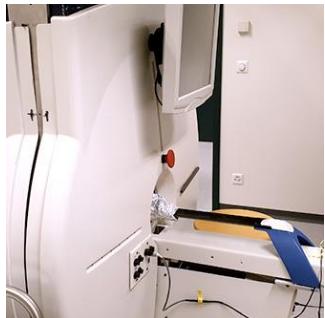
static acquisition on the brain



45 min

T_f

60 min



Avalanche photodiode LabPET 4 scanner

Reconstruction:

- MLEM (5 iterations on vena cava ; 15 on brain)
- Built-in quantitative calibration on FDG phantom
- Correction for inelastic scattering and radioactive decay

Sokoloff approach: [4]

Quantitative 3D CMR_{glc} maps

$$CMR_{glc}(T_f) = \frac{C_p}{LC} \frac{C_t^*(T_f)}{\int_0^{T_f} C_p^*(t) dt}$$

Lumped constant

0.71 [3]

Minimal invasiveness (FDG injection + one blood sample)

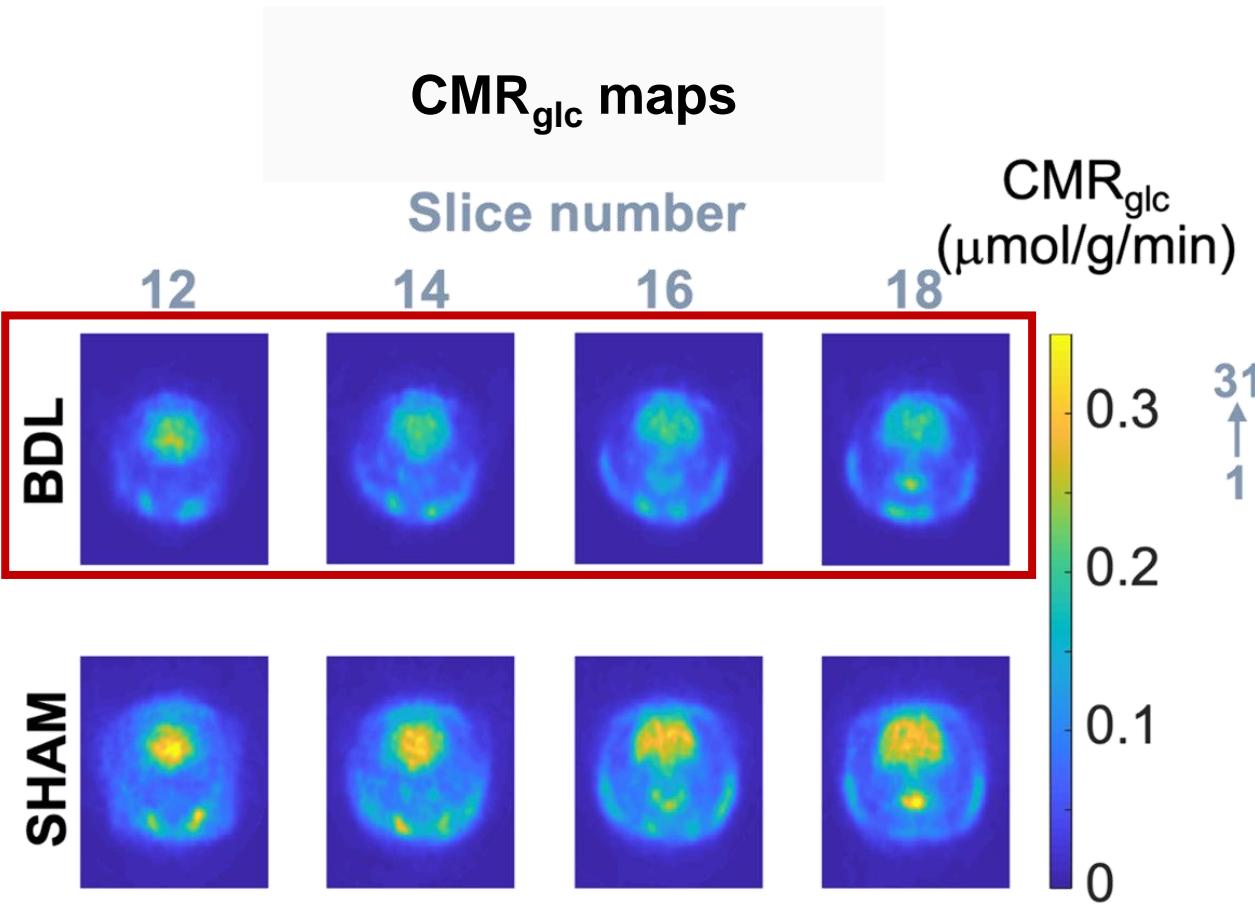
[1] Mosso et al., Anal. Biochem., 2022

[3] Tokugawa et al., J Nucl Med., 2007

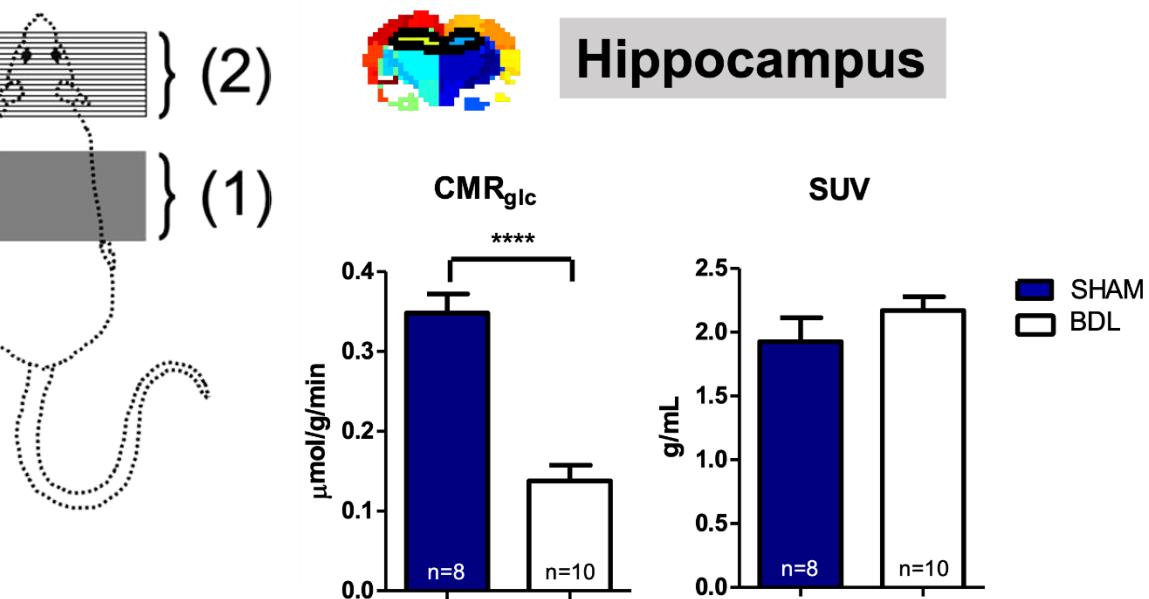
[2] Lanz et al., J. Nucl. Med., 2014

[4] Sokoloff et al., J. Neurochem., 1977

QUANTITATIVE CMR_{glc} MAPPING WITH PRECLINICAL PET:: APPLICATIONS [1] (HEPATIC ENCEPHALOPATHY)



- Limitations of the SUV when systemic metabolic effects occur
- Added power of quantitative mapping of glucose uptake (CMR_{glc}) using an image-derived IF



Mosso et al., Anal. Biochem., 2022

QUANTITATIVE CMR_{GLC} MAPPING WITH PRECLINICAL PET

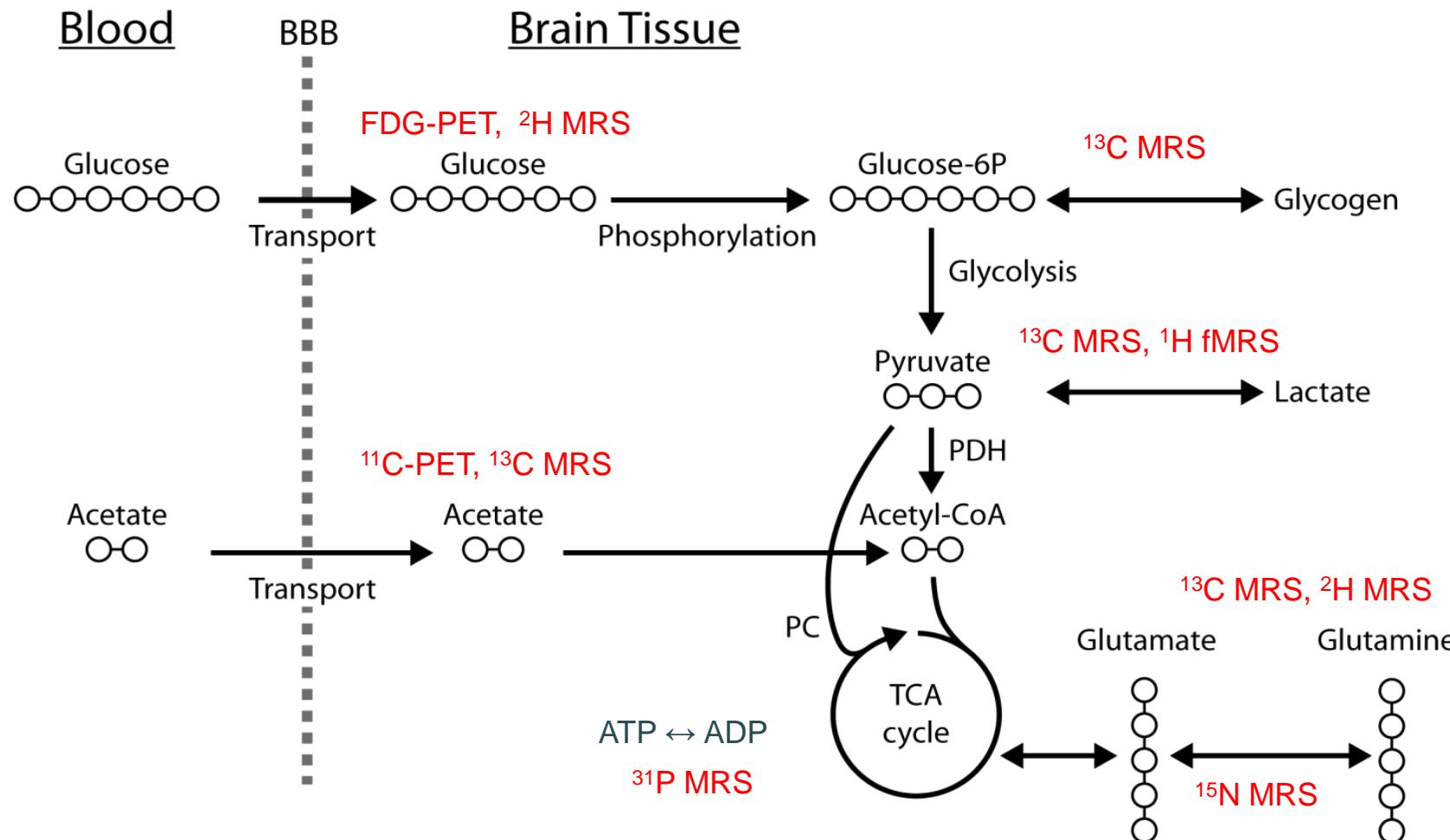
Minimally invasive metabolic flux measurement in rats and mice

- Image-derived tracer input function
- Calibrated PET images in Bq/ml
- Adapted metabolic modelling with dynamic (mice) or steady-state (rats) FDG radioactivity density maps

→ CMR_{glc} 3D parametric maps with PET scanner nominal resolution
(main limitation is the positron mean free path)

QUANTITATIVE METABOLIC MODELLING

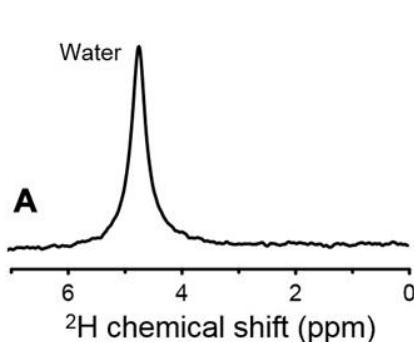
GOAL: compare, validate and combine multimodal results



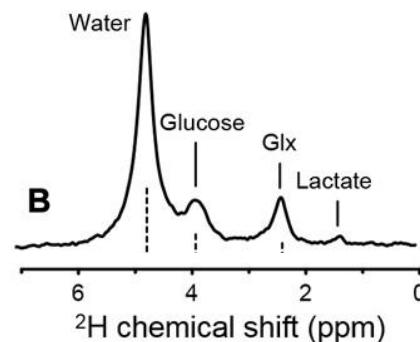
Deuterium MRSI

(also called DMI, deuterium metabolic imaging)

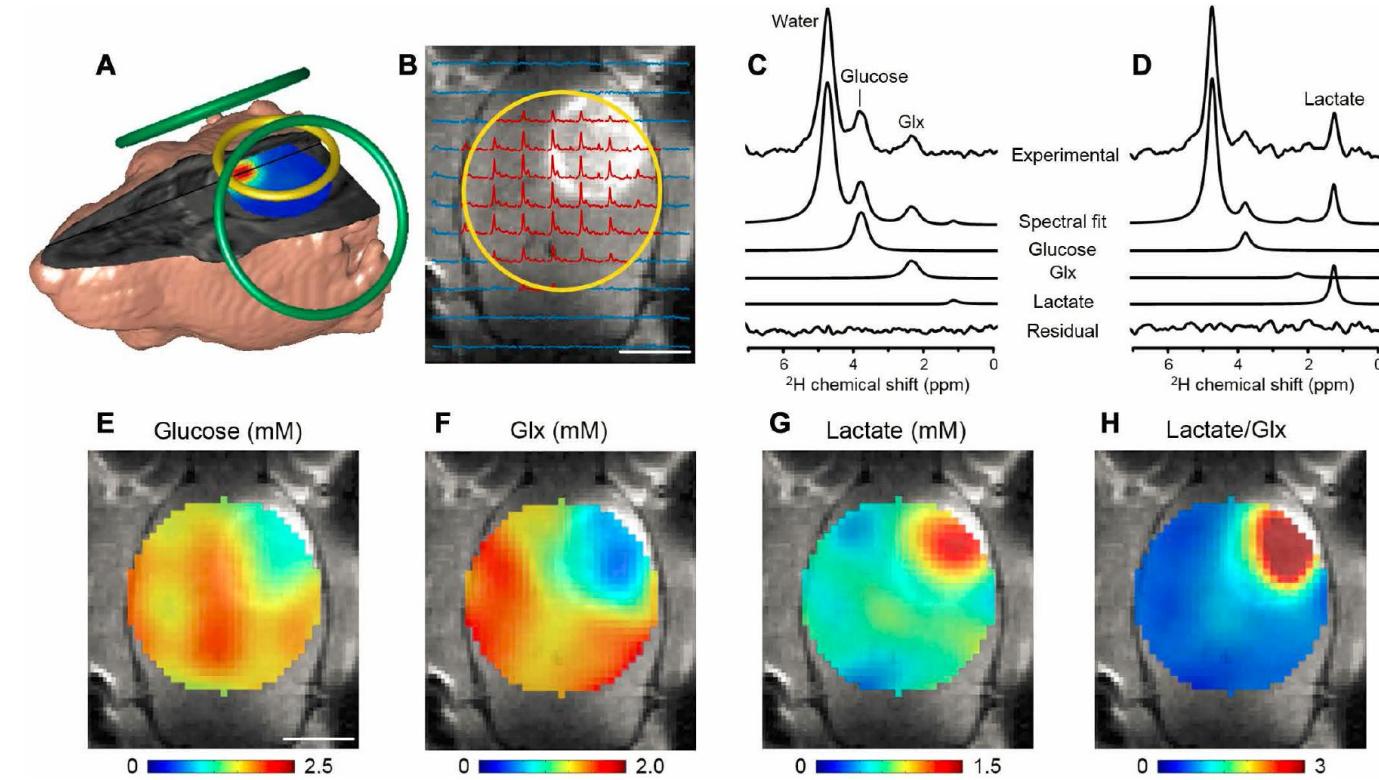
- Labelling experiment to study metabolic pathways (like in FDG-PET or ^{13}C MRS)
- Low background signal (water, lipids)
- Short relaxation times (T1 and T2)
-> faster temporal averages



rat brain in vivo at 11.7 T
before infusion of any
 ^2H -labeled substrate



rat brain after infusion
of $[6,6'-^2\text{H}_2]\text{glucose}$ in vivo

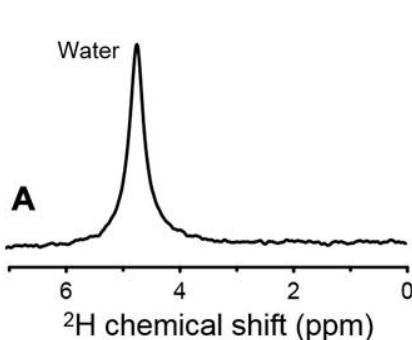


De Feyter *et al.*, *Sci. Adv.* 2018

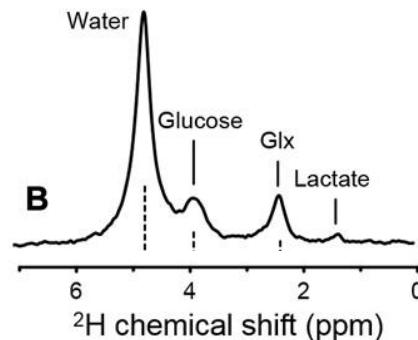
Deuterium MRSI

(also called DMI, deuterium metabolic imaging)

- Labelling experiment to study metabolic pathways (like in FDG-PET or ^{13}C MRS)
- Low background signal (water, lipids)
- Short relaxation times (T1 and T2)
-> faster temporal averages



rat brain in vivo at 11.7 T
before infusion of any
 ^2H -labeled substrate

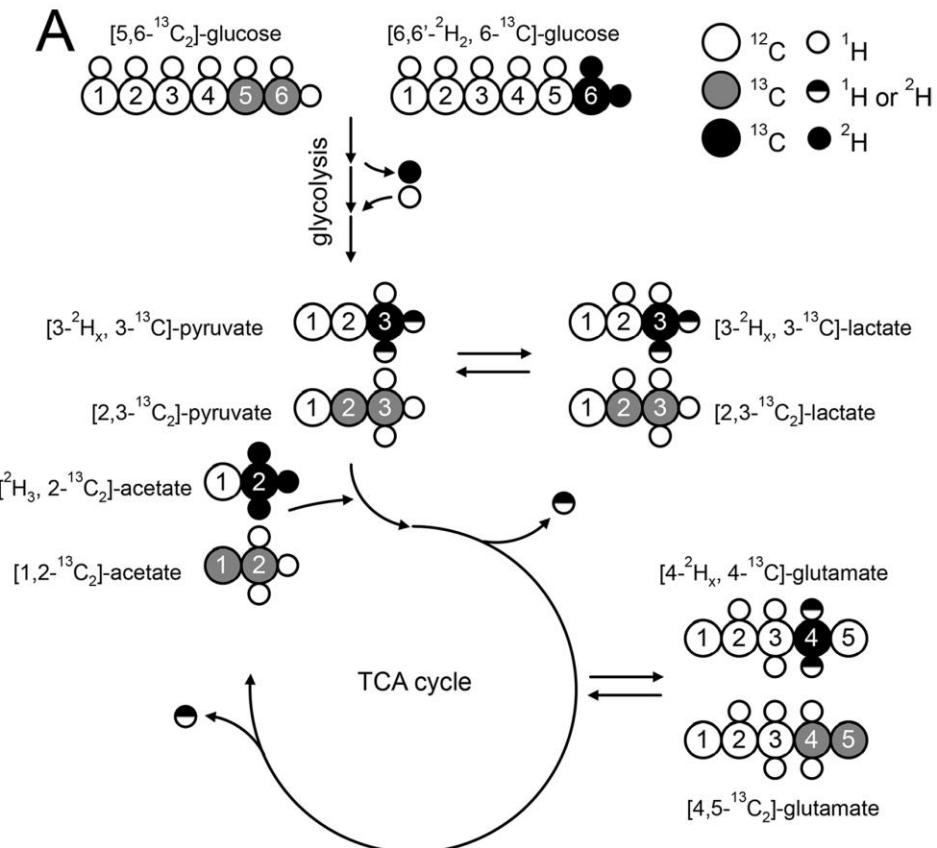


rat brain after infusion
of $[6,6'-2\text{H}_2]$ glucose in vivo

De Feyter *et al.*, *Sci. Adv.* 2018

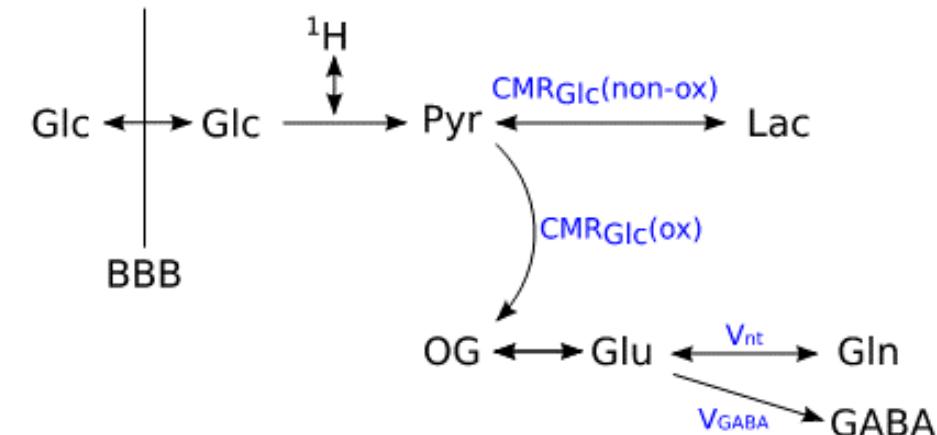
Specific challenges:

- label losses
- Isotopic effects



Towards quantitative Deuterium MRSI

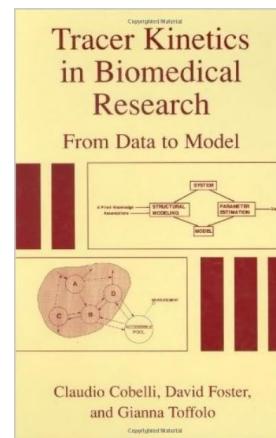
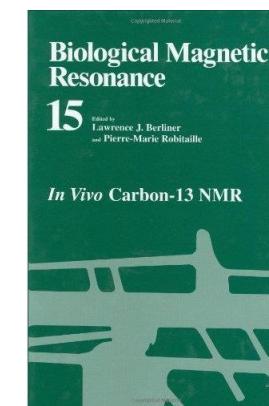
- Deuterium MRSI : **intermediary spatial resolution** as compared to FDG-PET and in vivo ^{13}C MRS (one single voxel)
- It is able to distinguish $\text{CMR}_{\text{Glc}}(\text{ox})$ et $\text{CMR}_{\text{Glc}}(\text{non-ox})$ (chemical specificity)
- It is non-radioactive and safe (strong clinical potential)
- Further developments need to be done to acquire metabolic maps dynamically
 - > new spatial encoding strategies
 - > obtain metabolic time courses for each voxel
 - > derive $\text{CMR}_{\text{Glc}}(\text{ox})$ et $\text{CMR}_{\text{Glc}}(\text{non-ox})$ in micromol/g/min
- Validate results in preclinical experiments with FDG-PET et ^{13}C MRS



BIBLIOGRAPHY

Contact: bernard.lanz@epfl.ch

- Cudalbu, C. & Lanz, B.
Methods | Magnetic Resonance Spectroscopy for the Measurement of In Vivo Brain Metabolism. in *Encyclopedia of Biological Chemistry III (Third Edition)* (ed. Jez, J.) (Elsevier, 2021). doi:10.1016/B978-0-12-819460-7.00295-4.
- Lai, M., Gruetter, R. & Lanz, B.
Progress towards in vivo brain ¹³C-MRS in mice: Metabolic flux analysis in small tissue volumes. *Anal Biochem* **529**, 229–244 (2017).
- Cobelli, C., Foster, D. and Toffolo, G. (2007) *Tracer kinetics in biomedical research: from data to model*, Kluwer Academic Publishers.
- Berliner, L. J. and Robitaille, P. M. (2002) *In vivo carbon-13 NMR*, Kluwer Academic Publishers.
- http://infoscience.epfl.ch/record/182628/files/EPFL_TH5468.pdf



Thank you for your attention

Contact: bernard.lanz@epfl.ch

